On a Class of Integer-Valued Functions
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 760-773
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the class of entire functions that increase not faster than $\exp\{\gamma|z|^{6/5}(\ln|z|)^{-1}\}$ and that, together with their first derivatives, take values from a fixed field of algebraic numbers at the points of a two-dimensional lattice of general form (in this case, the values increase not too fast). It is shown that any such functions is either a polynomial or can be represented in the form $e^{-m\alpha z}P(e^{\alpha z})$, where $m$ is a nonnegative integer, $P$ is a polynomial, and $\alpha$ is an algebraic number.
Keywords:
entire function, algebraic values.
@article{MZM_2020_107_5_a7,
author = {A. Y. Yanchenko and V. A. Podkopaeva},
title = {On a {Class} of {Integer-Valued} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {760--773},
publisher = {mathdoc},
volume = {107},
number = {5},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/}
}
A. Y. Yanchenko; V. A. Podkopaeva. On a Class of Integer-Valued Functions. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 760-773. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/