On a Class of Integer-Valued Functions
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 760-773.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the class of entire functions that increase not faster than $\exp\{\gamma|z|^{6/5}(\ln|z|)^{-1}\}$ and that, together with their first derivatives, take values from a fixed field of algebraic numbers at the points of a two-dimensional lattice of general form (in this case, the values increase not too fast). It is shown that any such functions is either a polynomial or can be represented in the form $e^{-m\alpha z}P(e^{\alpha z})$, where $m$ is a nonnegative integer, $P$ is a polynomial, and $\alpha$ is an algebraic number.
Keywords: entire function, algebraic values.
@article{MZM_2020_107_5_a7,
     author = {A. Y. Yanchenko and V. A. Podkopaeva},
     title = {On a {Class} of {Integer-Valued} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {760--773},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/}
}
TY  - JOUR
AU  - A. Y. Yanchenko
AU  - V. A. Podkopaeva
TI  - On a Class of Integer-Valued Functions
JO  - Matematičeskie zametki
PY  - 2020
SP  - 760
EP  - 773
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/
LA  - ru
ID  - MZM_2020_107_5_a7
ER  - 
%0 Journal Article
%A A. Y. Yanchenko
%A V. A. Podkopaeva
%T On a Class of Integer-Valued Functions
%J Matematičeskie zametki
%D 2020
%P 760-773
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/
%G ru
%F MZM_2020_107_5_a7
A. Y. Yanchenko; V. A. Podkopaeva. On a Class of Integer-Valued Functions. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 760-773. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/

[1] G. Polya, “Ueber ganzwertige gance Funktionen”, Rend. Circ. Mat. Palermo, 40:1 (1915), 1–16 | DOI

[2] A. O. Gelfond, “O tselochislennosti analiticheskikh funktsii”, Dokl. AN SSSR, 81 (1951), 341–344 | MR

[3] M. Welter, “Sur un théorème de Gel'fond–Selberg et une conjecture de Bundschuh–Shiokawa”, Acta Arith., 116:4 (2005), 363–385 | DOI | MR

[4] I. P. Rochev, “Obobschenie teorem Gelfonda i Valdshmidta o tseloznachnykh tselykh funktsiyakh”, Matem. sb., 202:8 (2011), 117–138 | DOI | MR | Zbl

[5] M. Waldschmidt, Transcendental Numbers and Functions of Several Variables, Shahrood, August 31, 2003, 2003; https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/IMC34.pdf

[6] A. O. Gelfond, Transtsendentnye i algebraicheskie chisla, GITTL, M., 1952 | MR

[7] G. Faltings, “Die Vermutungen von Tate und Mordell”, Jahresber. Deutsch. Math.-Verein., 86:1 (1984), 1–13 | MR

[8] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M., 1950 | MR