On a Class of Integer-Valued Functions
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 760-773

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the class of entire functions that increase not faster than $\exp\{\gamma|z|^{6/5}(\ln|z|)^{-1}\}$ and that, together with their first derivatives, take values from a fixed field of algebraic numbers at the points of a two-dimensional lattice of general form (in this case, the values increase not too fast). It is shown that any such functions is either a polynomial or can be represented in the form $e^{-m\alpha z}P(e^{\alpha z})$, where $m$ is a nonnegative integer, $P$ is a polynomial, and $\alpha$ is an algebraic number.
Keywords: entire function, algebraic values.
@article{MZM_2020_107_5_a7,
     author = {A. Y. Yanchenko and V. A. Podkopaeva},
     title = {On a {Class} of {Integer-Valued} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {760--773},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/}
}
TY  - JOUR
AU  - A. Y. Yanchenko
AU  - V. A. Podkopaeva
TI  - On a Class of Integer-Valued Functions
JO  - Matematičeskie zametki
PY  - 2020
SP  - 760
EP  - 773
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/
LA  - ru
ID  - MZM_2020_107_5_a7
ER  - 
%0 Journal Article
%A A. Y. Yanchenko
%A V. A. Podkopaeva
%T On a Class of Integer-Valued Functions
%J Matematičeskie zametki
%D 2020
%P 760-773
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/
%G ru
%F MZM_2020_107_5_a7
A. Y. Yanchenko; V. A. Podkopaeva. On a Class of Integer-Valued Functions. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 760-773. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a7/