Characterization of Bounded Sets in Terms of Asymptotic Cones and Homotheties
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 717-733.

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization of bounded sets in Banach spaces in terms of asymptotic cones and the Hausdorff deviations of sets from them homothetic images is obtained. Similar results for generalizations of the notion of boundedness are presented. Boundedness criteria have previously been known only for recessively compact sets.
Keywords: asymptotic cone, recession cone, homothety, bounded set, recessively compact set.
@article{MZM_2020_107_5_a4,
     author = {A. V. Marinov},
     title = {Characterization of {Bounded} {Sets} in {Terms} of {Asymptotic} {Cones} and {Homotheties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--733},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a4/}
}
TY  - JOUR
AU  - A. V. Marinov
TI  - Characterization of Bounded Sets in Terms of Asymptotic Cones and Homotheties
JO  - Matematičeskie zametki
PY  - 2020
SP  - 717
EP  - 733
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a4/
LA  - ru
ID  - MZM_2020_107_5_a4
ER  - 
%0 Journal Article
%A A. V. Marinov
%T Characterization of Bounded Sets in Terms of Asymptotic Cones and Homotheties
%J Matematičeskie zametki
%D 2020
%P 717-733
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a4/
%G ru
%F MZM_2020_107_5_a4
A. V. Marinov. Characterization of Bounded Sets in Terms of Asymptotic Cones and Homotheties. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 717-733. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a4/

[1] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR | Zbl

[2] A. Auslender, M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer, New York, 2003 | MR

[3] D. T. Luc, J.-P. Penot, “Convergence of asymptotic directions”, Trans. Amer. Math. Soc., 353:10 (2001), 4095–4121 | DOI | MR

[4] D. T. Luc, “Recessively compact sets: properties and uses”, Set-Valued Anal., 10:1 (2002), 15–35 | DOI | MR

[5] G. Köthe, Topological Vector Spaces. I, Springer-Verlag, Berlin, 1969 | MR

[6] C. Zălinescu, “Stability for a class of nonlinear optimization problems and applications”, Nonsmooth Optimization and Related Topics,, Ettore Majorana Internat. Sci. Ser. Phys. Sci., 43, Plenum, New York, 1989, 437–458 | MR

[7] J.-P. Dedieu, “Critères de fermeture pour l'image d'un fermé non convexe par une multiapplication”, C. R. Acad. Sci. Paris Sér. A, 287 (1978), 941–943 | MR

[8] D. T. Luc, Theory of Vector Optimization, Lecture Notes in Econom. and Math. Systems, 319, Springer-Verlag, New York, 1989 | MR

[9] C. Zălinescu, “Recession cones and asymptotically compact sets”, J. Optim. Theory Appl., 77:1 (1993), 209–220 | DOI | MR

[10] G. Isac, M. Théra, “Complementarity problem and the existence of the postcritical equilibrium state of the thin elastic plate”, Seminaire d'Analyse Numérique, Univ. Paul Sabatier, Toulouse, 1985–86, XI-1–XI-27

[11] G. C. Shephard, R. J. Webster, “Metrics for sets of convex bodies”, Mathematika, 12 (1965), 73–88 | DOI | MR

[12] R. Bantegnie, “Convexité des hyperespaces”, Arch. Math. (Basel), 26:4 (1975), 414-420 | DOI | MR