Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 575-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1940, M. G. Krein obtained necessary and sufficient conditions for the extension of a continuous function $f$ defined in an interval $(-a,a)$, $a>0$, to a positive definite function on the whole number axis $\mathbb R$. In addition, Krein showed that the function $1-|x|$, $|x|$, can be extended to a positive definite one on $\mathbb R$ if and only if $0$, and this function has a unique extension only in the case $a=2$. The present paper deals with the problem of uniqueness of the extension of the function $1-|x|$, $|x|\le a$, $a\in(0,1)$, for a class of positive definite functions on $\mathbb R$ whose support is contained in the closed interval $[-1,1]$ (the class $\mathfrak F$). It is proved that if $a\in[1/2,1]$ and $\operatorname{Re}\varphi(x)=1-|x|$, $|x|\le a$, for some $\varphi\in\mathfrak F$, then $\varphi(x)=(1-|x|)_+$, $x\in\mathbb R$. In addition, for any $a\in(0,1/2)$, there exists a function $\varphi\in\mathfrak F$ such that $\varphi(x)=1-|x|$, $|x|\le a$, but $\varphi(x)\not\equiv(1-|x|)_+$. Also the paper deals with extremal problems for positive definite functions and nonnegative trigonometric polynomials indirectly related to the extension problem under consideration.
Keywords: extension of positive definite functions, Bochner–Khinchine theorem, piecewise linear functions, nonnegative trigonometric polynomials, extremal problems.
@article{MZM_2020_107_4_a7,
     author = {A. Manov},
     title = {Uniqueness of the {Continuation} of a {Certain} {Function} to a {Positive} {Definite} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {575--590},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/}
}
TY  - JOUR
AU  - A. Manov
TI  - Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
JO  - Matematičeskie zametki
PY  - 2020
SP  - 575
EP  - 590
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/
LA  - ru
ID  - MZM_2020_107_4_a7
ER  - 
%0 Journal Article
%A A. Manov
%T Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
%J Matematičeskie zametki
%D 2020
%P 575-590
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/
%G ru
%F MZM_2020_107_4_a7
A. Manov. Uniqueness of the Continuation of a Certain Function to a Positive Definite Function. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 575-590. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/

[1] M. G. Krein, “O probleme prodolzheniya ermitovo polozhitelnykh nepreryvnykh funktsii”, Dokl. AN SSSR, 26:1 (1940), 17–22 | MR

[2] V. P. Zastavnyi, R. M. Trigub, Polozhitelno opredelennye splainy, Dep. v Ukr. NIINTI, No 593-Uk.87

[3] V. P. Zastavnyi, “Extension of a function from exterior of an interval to a positive-definite function on the axis and an approximative characteristic of the class $W_{M}^{r,\beta}$”, Ukrainian Math. J., 55:7 (2003), 1189–1897 | DOI | MR

[4] S. Norvidas, “On an extension property for characteristic functions”, Monatsh Math., 188:2 (2019), 309–319 | DOI | MR

[5] S. Norvidas, “A theorem on uniqueness for characteristic functions”, C. R. Math. Acad. Sci. Paris, 355:8 (2017), 920–924 | DOI | MR

[6] T. Gneiting, “Curiosities of characteristic functions”, Expo. Math., 19 (2001), 359–363 | DOI | MR

[7] Z. Sasvári, “The extension problem for positive definite functions. A short historical survey”, Operator Theory and Indefinite Inner Product Spaces, Oper. Theory Adv. Appl., 163, Birkhäuser, Basel, 2005, 365–379 | MR

[8] C. L. Siegel, “Über Gitterpunkte in konvexen Körpern und damit zusammenhängendes Extremal Problem”, Acta Math., 65:1 (1935), 307–323 | DOI | MR

[9] R. P. Boas Jr., M. Kac, “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12:1 (1945), 189–206 | DOI | MR

[10] D. V. Gorbachev, “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl

[11] L. Fejér, “Über trigonometriche Polynome”, J. Reine Angew. Math., 146 (1916), 53–82 | MR

[12] G. Polia, G. Sege, Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978 | MR

[13] G. Szegö, “Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen”, Math. Ann., 96:1 (1927), 601–632 | DOI | MR

[14] E. Egerváry, O. Szász, “Einige Extremalprobleme im Bereiche der trigonometrischen Polynome”, Math. Z., 27 (1928), 641–652 | DOI | MR

[15] S. B. Gashkov, “Neravenstvo Feiera–Egervari–Sassa dlya neotritsatelnykh trigonometricheskikh mnogochlenov”, Matem. prosv., ser. 3, 9, Izd-vo MTsNMO, M., 2005, 69–75

[16] S. G. Révész, “Turán's extremal problem on locally compact Abelian groups”, Anal. Math., 37:1 (2011), 15–50 | DOI | MR

[17] D. V. Gorbachev, Izbrannye zadachi teorii funktsii i teorii priblizhenii i ikh prilozheniya, Grif i K, Tula, 2005

[18] Z. Sasvári, Multivariate Characteristic and Correlation Functions, De Gruyter Stud. Math., 50, Walter de Gruyter, Berlin, 2013 | MR

[19] T. M. Bisgaard, Z. Sasvári, Characteristic Functions and Moment Sequences. Positive Definiteness in Probability, Nova Sci. Publ., Huntington, NY, 2000 | MR

[20] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR

[21] Zh.-P. Kakhan, Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976 | MR | Zbl

[22] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[23] R. P. Boas Jr., Entire Functions, Academic Press, New York, 1954 | MR