Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 575-590

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1940, M. G. Krein obtained necessary and sufficient conditions for the extension of a continuous function $f$ defined in an interval $(-a,a)$, $a>0$, to a positive definite function on the whole number axis $\mathbb R$. In addition, Krein showed that the function $1-|x|$, $|x|$, can be extended to a positive definite one on $\mathbb R$ if and only if $0$, and this function has a unique extension only in the case $a=2$. The present paper deals with the problem of uniqueness of the extension of the function $1-|x|$, $|x|\le a$, $a\in(0,1)$, for a class of positive definite functions on $\mathbb R$ whose support is contained in the closed interval $[-1,1]$ (the class $\mathfrak F$). It is proved that if $a\in[1/2,1]$ and $\operatorname{Re}\varphi(x)=1-|x|$, $|x|\le a$, for some $\varphi\in\mathfrak F$, then $\varphi(x)=(1-|x|)_+$, $x\in\mathbb R$. In addition, for any $a\in(0,1/2)$, there exists a function $\varphi\in\mathfrak F$ such that $\varphi(x)=1-|x|$, $|x|\le a$, but $\varphi(x)\not\equiv(1-|x|)_+$. Also the paper deals with extremal problems for positive definite functions and nonnegative trigonometric polynomials indirectly related to the extension problem under consideration.
Keywords: extension of positive definite functions, Bochner–Khinchine theorem, piecewise linear functions, nonnegative trigonometric polynomials, extremal problems.
@article{MZM_2020_107_4_a7,
     author = {A. Manov},
     title = {Uniqueness of the {Continuation} of a {Certain} {Function} to a {Positive} {Definite} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {575--590},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/}
}
TY  - JOUR
AU  - A. Manov
TI  - Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
JO  - Matematičeskie zametki
PY  - 2020
SP  - 575
EP  - 590
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/
LA  - ru
ID  - MZM_2020_107_4_a7
ER  - 
%0 Journal Article
%A A. Manov
%T Uniqueness of the Continuation of a Certain Function to a Positive Definite Function
%J Matematičeskie zametki
%D 2020
%P 575-590
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/
%G ru
%F MZM_2020_107_4_a7
A. Manov. Uniqueness of the Continuation of a Certain Function to a Positive Definite Function. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 575-590. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a7/