Yet Another Description of the Connes--Higson Functor
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 561-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $A$ and $B$ are $C^{*}$-algebras, $A$ is separable, and $B$ is stable. The elements of the group $E_{1}(A,B)$ in Connes–Higson $E$-theory are represented by $*$-homomorphisms from the suspension of $A$ to the asymptotic algebra $\mathfrak AB$. In the paper, an endofunctor $\mathfrak M$ in the category of $C^{*}$-algebras is constructed and a set of special homotopy classes of $*$-homomorphisms from $A$ to $\mathfrak{MA}B$ is defined so that this set endowed with the natural structure of an Abelian group coincides with $E_{1}(A,B)$.
Keywords: $E$-theory, $KK$-theory, homotopy invariant functor.
@article{MZM_2020_107_4_a6,
     author = {G. S. Makeev},
     title = {Yet {Another} {Description} of the {Connes--Higson} {Functor}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--574},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a6/}
}
TY  - JOUR
AU  - G. S. Makeev
TI  - Yet Another Description of the Connes--Higson Functor
JO  - Matematičeskie zametki
PY  - 2020
SP  - 561
EP  - 574
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a6/
LA  - ru
ID  - MZM_2020_107_4_a6
ER  - 
%0 Journal Article
%A G. S. Makeev
%T Yet Another Description of the Connes--Higson Functor
%J Matematičeskie zametki
%D 2020
%P 561-574
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a6/
%G ru
%F MZM_2020_107_4_a6
G. S. Makeev. Yet Another Description of the Connes--Higson Functor. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 561-574. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a6/

[1] J. Cuntz, “A new look at $KK$-Theory”, $K$-Theory, 1:1 (1987), 31–51 | DOI | MR

[2] A. Connes, N. Higson, “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Acad. Sci. Paris Sér. I Math., 311:2 (1990), 101–106 | MR

[3] V. M. Manuilov, “Bolee simmetrichnoe opisanie $KK$-bifunktora Kasparova”, Funkts. analiz i ego pril., 52:3 (2018), 32–41 | DOI

[4] E. Guentner, N. Higson, J. Trout, Equivariant $E$-Theory for $C^*$-Algebras, Mem. Amer. Math. Soc., 148, no. 703, Providence, RI, Amer. Math. Soc., 2000 | DOI | MR

[5] B. Blackadar, $K$-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., 5, Cambridge Univ. Press, Cambridge, 1998 | MR

[6] M. Dădărlat, T. A. Loring, “$K$-homology, asymptotic representations, and unsuspended $E$-theory”, J. Funct. Anal., 126:2 (1994), 367–383 | DOI | MR

[7] E. C. Lance, Hilbert $C^*$-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., 210, Cambridge Univ. Press, Cambridge, 1995 | MR

[8] K. K. Jensen, K. Thomsen, Elements of $KK$-Theory, Birkhäuser Boston, Boston, MA, 1991 | MR

[9] N. Higson, J. Roe, “On the coarse Baum–Connes conjecture”, Novikov Conjectures, Index Theorems and Rigidity, Vol. 2, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 227–254 | DOI | MR

[10] N. Higson, J. Roe, Analytic $K$-Homology, Oxford Univ. Press, Oxford, 2000 | MR

[11] R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72:3 (1952), 400–413 | DOI | MR