Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_4_a6, author = {G. S. Makeev}, title = {Yet {Another} {Description} of the {Connes--Higson} {Functor}}, journal = {Matemati\v{c}eskie zametki}, pages = {561--574}, publisher = {mathdoc}, volume = {107}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a6/} }
G. S. Makeev. Yet Another Description of the Connes--Higson Functor. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 561-574. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a6/
[1] J. Cuntz, “A new look at $KK$-Theory”, $K$-Theory, 1:1 (1987), 31–51 | DOI | MR
[2] A. Connes, N. Higson, “Déformations, morphismes asymptotiques et $K$-théorie bivariante”, C. R. Acad. Sci. Paris Sér. I Math., 311:2 (1990), 101–106 | MR
[3] V. M. Manuilov, “Bolee simmetrichnoe opisanie $KK$-bifunktora Kasparova”, Funkts. analiz i ego pril., 52:3 (2018), 32–41 | DOI
[4] E. Guentner, N. Higson, J. Trout, Equivariant $E$-Theory for $C^*$-Algebras, Mem. Amer. Math. Soc., 148, no. 703, Providence, RI, Amer. Math. Soc., 2000 | DOI | MR
[5] B. Blackadar, $K$-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., 5, Cambridge Univ. Press, Cambridge, 1998 | MR
[6] M. Dădărlat, T. A. Loring, “$K$-homology, asymptotic representations, and unsuspended $E$-theory”, J. Funct. Anal., 126:2 (1994), 367–383 | DOI | MR
[7] E. C. Lance, Hilbert $C^*$-Modules. A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., 210, Cambridge Univ. Press, Cambridge, 1995 | MR
[8] K. K. Jensen, K. Thomsen, Elements of $KK$-Theory, Birkhäuser Boston, Boston, MA, 1991 | MR
[9] N. Higson, J. Roe, “On the coarse Baum–Connes conjecture”, Novikov Conjectures, Index Theorems and Rigidity, Vol. 2, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 227–254 | DOI | MR
[10] N. Higson, J. Roe, Analytic $K$-Homology, Oxford Univ. Press, Oxford, 2000 | MR
[11] R. G. Bartle, L. M. Graves, “Mappings between function spaces”, Trans. Amer. Math. Soc., 72:3 (1952), 400–413 | DOI | MR