On the Functional Independence of Zeta-Functions of Certain Cusp Forms
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 550-560

Voir la notice de l'article provenant de la source Math-Net.Ru

The zeta-function $\zeta(s,F)$, $s=\sigma+it$ of a cusp form $F$ of weight $\kappa$ in the half-plane $\sigma>(\kappa+1)/2$ is defined by the Dirichlet series whose coefficients are the coefficients of the Fourier series of the form $F$. The compositions $V(\zeta(s,F))$ with an operator $V$ on the space of analytic functions are considered, and the functional independence of these compositions for certain classes of operators $V$ is proved.
Keywords: zeta-function of a cusp form, functional independence, Hecke eigen-cusp form, universality.
@article{MZM_2020_107_4_a5,
     author = {A. Laurin\v{c}ikas},
     title = {On the {Functional} {Independence} of {Zeta-Functions} of {Certain} {Cusp} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {550--560},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a5/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On the Functional Independence of Zeta-Functions of Certain Cusp Forms
JO  - Matematičeskie zametki
PY  - 2020
SP  - 550
EP  - 560
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a5/
LA  - ru
ID  - MZM_2020_107_4_a5
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On the Functional Independence of Zeta-Functions of Certain Cusp Forms
%J Matematičeskie zametki
%D 2020
%P 550-560
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a5/
%G ru
%F MZM_2020_107_4_a5
A. Laurinčikas. On the Functional Independence of Zeta-Functions of Certain Cusp Forms. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 550-560. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a5/