Lower Bounds for the Wiener Norm in~$\mathbb Z_p^d$
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 515-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain lower bounds for the $\ell_1$-norm of the Fourier transform of functions on $\mathbb Z_p^d$.
Mots-clés : Fourier transform
Keywords: Wiener norm, linear space over a finite field.
@article{MZM_2020_107_4_a2,
     author = {M. R. Gabdullin},
     title = {Lower {Bounds} for the {Wiener} {Norm} in~$\mathbb Z_p^d$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--532},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a2/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - Lower Bounds for the Wiener Norm in~$\mathbb Z_p^d$
JO  - Matematičeskie zametki
PY  - 2020
SP  - 515
EP  - 532
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a2/
LA  - ru
ID  - MZM_2020_107_4_a2
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T Lower Bounds for the Wiener Norm in~$\mathbb Z_p^d$
%J Matematičeskie zametki
%D 2020
%P 515-532
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a2/
%G ru
%F MZM_2020_107_4_a2
M. R. Gabdullin. Lower Bounds for the Wiener Norm in~$\mathbb Z_p^d$. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 515-532. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a2/

[1] S. V. Konyagin, “O probleme Littlvuda”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 243–265 | MR | Zbl

[2] O. C. McGehee, L. Pigno, B. Smith, “Hardy's inequality and the $L_1$ norm of exponential sums”, Ann. of Math. (2), 113:3 (1981), 613–618 | DOI | MR

[3] V. N. Temlyakov, Multivariate Approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR

[4] B. Green, S. Konyagin, “On the Littlewood problem modulo prime”, Canad. J. Math., 2009, no. 61, 141–164 | DOI | MR

[5] T. Sanders, “The Littlewood–Gowers problem”, J. Anal. Math., 2007, no. 101, 123–162 | DOI | MR

[6] S. V. Konyagin, I. D. Shkredov, “Kolichestvennyi variant teoremy Berlinga–Khelsona”, Funkts. analiz i ego pril., 49:2 (2015), 39–53 | DOI | MR | Zbl

[7] S. V. Konyagin, I. D. Shkredov, “O norme Vinera podmnozhestv $\mathbb Z_p$ promezhutochnogo razmera”, Fundament. i prikl. matem., 19:5 (2014), 75–87 | MR | Zbl

[8] T. Schoen, “On the Littlewood conjecture in $\mathbb Z/p\mathbb Z$”, Mosc. J. Comb. Number Theory, 7:3 (2016), 66–72 | MR

[9] T. Sanders, Bounds in the Idempotent Theorem, arXiv: 1610.07092

[10] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR