Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_4_a2, author = {M. R. Gabdullin}, title = {Lower {Bounds} for the {Wiener} {Norm} in~$\mathbb Z_p^d$}, journal = {Matemati\v{c}eskie zametki}, pages = {515--532}, publisher = {mathdoc}, volume = {107}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a2/} }
M. R. Gabdullin. Lower Bounds for the Wiener Norm in~$\mathbb Z_p^d$. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 515-532. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a2/
[1] S. V. Konyagin, “O probleme Littlvuda”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 243–265 | MR | Zbl
[2] O. C. McGehee, L. Pigno, B. Smith, “Hardy's inequality and the $L_1$ norm of exponential sums”, Ann. of Math. (2), 113:3 (1981), 613–618 | DOI | MR
[3] V. N. Temlyakov, Multivariate Approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR
[4] B. Green, S. Konyagin, “On the Littlewood problem modulo prime”, Canad. J. Math., 2009, no. 61, 141–164 | DOI | MR
[5] T. Sanders, “The Littlewood–Gowers problem”, J. Anal. Math., 2007, no. 101, 123–162 | DOI | MR
[6] S. V. Konyagin, I. D. Shkredov, “Kolichestvennyi variant teoremy Berlinga–Khelsona”, Funkts. analiz i ego pril., 49:2 (2015), 39–53 | DOI | MR | Zbl
[7] S. V. Konyagin, I. D. Shkredov, “O norme Vinera podmnozhestv $\mathbb Z_p$ promezhutochnogo razmera”, Fundament. i prikl. matem., 19:5 (2014), 75–87 | MR | Zbl
[8] T. Schoen, “On the Littlewood conjecture in $\mathbb Z/p\mathbb Z$”, Mosc. J. Comb. Number Theory, 7:3 (2016), 66–72 | MR
[9] T. Sanders, Bounds in the Idempotent Theorem, arXiv: 1610.07092
[10] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR