Keywords: generalized binomial coefficients, Pascal triangle modulo 2.
@article{MZM_2020_107_4_a1,
author = {E. V. Burlachenko},
title = {Fractal {Generalized} {Pascal} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {498--514},
year = {2020},
volume = {107},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a1/}
}
E. V. Burlachenko. Fractal Generalized Pascal Matrices. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 498-514. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a1/
[1] G. Fontené, “Généralisation d'une formule connue”, Nouv. Ann. Math. (4), 15 (1915), 112
[2] H. D. Nguyen, “A generalization of the digital binomial theorem”, J. Integer Seq., 18:5 (2015), Article 15.5.7 | MR
[3] T. Mansour, H. D. Nguyen, A $q$-Digital Binomial Theorem, 2015, arXiv: 1506.07945
[4] T. Mansour, H. D. Nguyen, A Digital Binomial Theorem for Sheffer Sequences, 2015, arXiv: 1510.08529
[5] L. Jiu, C. Vignat, “On binomial identities in arbitrary bases”, J. Integer Seq., 19:5 (2016), Article 16.5.5 | MR
[6] T. Wakhare, C. Vignat, Base-$b$ Analogues of Classic Combinatorial Objects, 2016, arXiv: 1607.02564
[7] S. Roman, The Umbral Calculus, Pure Appl. Math., 111, Academic Press, New York, 1984 | MR
[8] C. T. Long, “Some divisibility properties of Pascal's triangle”, Fibonacci Quart., 19:3 (1981), 257–263 | MR
[9] S. K. Abachiev, “O treugolnike Paskalya, prostykh delitelyakh i fraktalnykh strukturakh”, V mire nauki, 1989, no. 9, 75–78
[10] B. A. Bondarenko, Obobschennye treugolniki i piramidy Paskalya, ikh fraktali, grafy i prilozheniya, Fan, Tashkent, 1990 | MR
[11] T. Ball, T. Edgar, D. Juda, “Dominance orders, generalized binomial coefficients, and Kummer's theorem”, Math. Mag., 87:2 (2014), 135–143 | DOI | MR