Fractal Generalized Pascal Matrices
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 498-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of generalized Pascal matrices whose entries are generalized binomial coefficients is regarded as a group with respect to Hadamard multiplication. A special system of matrices is introduced and is used to construct fractal generalized Pascal matrices. The Pascal matrix (triangle) is expanded in the Hadamard product of fractal generalized Pascal matrices whose nonzero entries are $p^k$, where $p$ is a fixed prime and $k=0,1,2,\dots$ . The introduced system of matrices suggests the idea of “zero” generalized Pascal matrices, each of which is the limit case of a certain set of generalized Pascal matrices. “Zero” fractal generalized Pascal matrices, which are exemplified by the Pascal triangle modulo 2, are considered.
Mots-clés : Pascal matrix
Keywords: generalized binomial coefficients, Pascal triangle modulo 2.
@article{MZM_2020_107_4_a1,
     author = {E. V. Burlachenko},
     title = {Fractal {Generalized} {Pascal} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {498--514},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a1/}
}
TY  - JOUR
AU  - E. V. Burlachenko
TI  - Fractal Generalized Pascal Matrices
JO  - Matematičeskie zametki
PY  - 2020
SP  - 498
EP  - 514
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a1/
LA  - ru
ID  - MZM_2020_107_4_a1
ER  - 
%0 Journal Article
%A E. V. Burlachenko
%T Fractal Generalized Pascal Matrices
%J Matematičeskie zametki
%D 2020
%P 498-514
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a1/
%G ru
%F MZM_2020_107_4_a1
E. V. Burlachenko. Fractal Generalized Pascal Matrices. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 498-514. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a1/

[1] G. Fontené, “Généralisation d'une formule connue”, Nouv. Ann. Math. (4), 15 (1915), 112

[2] H. D. Nguyen, “A generalization of the digital binomial theorem”, J. Integer Seq., 18:5 (2015), Article 15.5.7 | MR

[3] T. Mansour, H. D. Nguyen, A $q$-Digital Binomial Theorem, 2015, arXiv: 1506.07945

[4] T. Mansour, H. D. Nguyen, A Digital Binomial Theorem for Sheffer Sequences, 2015, arXiv: 1510.08529

[5] L. Jiu, C. Vignat, “On binomial identities in arbitrary bases”, J. Integer Seq., 19:5 (2016), Article 16.5.5 | MR

[6] T. Wakhare, C. Vignat, Base-$b$ Analogues of Classic Combinatorial Objects, 2016, arXiv: 1607.02564

[7] S. Roman, The Umbral Calculus, Pure Appl. Math., 111, Academic Press, New York, 1984 | MR

[8] C. T. Long, “Some divisibility properties of Pascal's triangle”, Fibonacci Quart., 19:3 (1981), 257–263 | MR

[9] S. K. Abachiev, “O treugolnike Paskalya, prostykh delitelyakh i fraktalnykh strukturakh”, V mire nauki, 1989, no. 9, 75–78

[10] B. A. Bondarenko, Obobschennye treugolniki i piramidy Paskalya, ikh fraktali, grafy i prilozheniya, Fan, Tashkent, 1990 | MR

[11] T. Ball, T. Edgar, D. Juda, “Dominance orders, generalized binomial coefficients, and Kummer's theorem”, Math. Mag., 87:2 (2014), 135–143 | DOI | MR