On a Generalization of Voronin's Theorem
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 400-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

Voronin's theorem states that the Riemann zeta-function $\zeta(s)$ is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts $\zeta(s+i\tau)$, $\tau \in \mathbb{R}$. Some results on the approximation by the shifts $\zeta(s+i\varphi(\tau))$ with some function $\varphi(\tau)$ are also known. In this paper, it is established that an analytic function without zeros in the strip $1/2+1/(2\alpha)\operatorname{Re} s1$ can be approximated by the shifts $\zeta(s+i\log^\alpha \tau)$ with $\alpha >1$.
Keywords: Riemann zeta-function, limit theorem, Voronin's theorem, universality.
@article{MZM_2020_107_3_a6,
     author = {A. Laurin\v{c}ikas},
     title = {On a {Generalization} of {Voronin's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {400--411},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On a Generalization of Voronin's Theorem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 400
EP  - 411
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/
LA  - ru
ID  - MZM_2020_107_3_a6
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On a Generalization of Voronin's Theorem
%J Matematičeskie zametki
%D 2020
%P 400-411
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/
%G ru
%F MZM_2020_107_3_a6
A. Laurinčikas. On a Generalization of Voronin's Theorem. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 400-411. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/

[1] H. Bohr, R. Courant, “Neue Anwendungen der Theorie der Diophantischen Approximationen auf Riemannschen Zetafunktion”, J. Reine Angew. Math., 144 (1914), 249–274 | MR

[2] S. M. Voronin, “O raspredelenii nenulevykh znachenii $\zeta$-funktsii Rimana”, Tr. MIAN SSSR, 128, 1972, 131–150 | MR | Zbl

[3] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[4] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Thesis, Indian Statistical Institute, Calcutta, 1981

[5] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR

[6] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[7] A. Laurinchikas, L. Meshka, “Utochnenie neravenstva universalnosti”, Matem. zametki, 96:6 (2014), 905–910 | DOI | MR | Zbl

[8] J.-L. Mauclaire, “Universality of the Riemann zeta-function: two remarks”, Ann. Univ. Sci. Budapest. Sect. Comput., 39 (2013), 311–319 | MR

[9] Ł. Pańkowski, “Joint universality for dependent $L$-functions”, Ramanujan J., 45:1 (2018), 181–195 | DOI | MR

[10] A. Laurinčikas, R. Macaitien{. e}, D. Šiaučiūnas, “A generalization of the Voronin theorem”, Lith. Math. J., 59:2 (2019), 156–168 | DOI | MR

[11] A. Ivic̆, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, John Wiley Sons, New York, 1985 | MR

[12] P. Bilingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[13] S. M. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (48) (1952), 31–122 | MR | Zbl