Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_3_a6, author = {A. Laurin\v{c}ikas}, title = {On a {Generalization} of {Voronin's} {Theorem}}, journal = {Matemati\v{c}eskie zametki}, pages = {400--411}, publisher = {mathdoc}, volume = {107}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/} }
A. Laurinčikas. On a Generalization of Voronin's Theorem. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 400-411. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/
[1] H. Bohr, R. Courant, “Neue Anwendungen der Theorie der Diophantischen Approximationen auf Riemannschen Zetafunktion”, J. Reine Angew. Math., 144 (1914), 249–274 | MR
[2] S. M. Voronin, “O raspredelenii nenulevykh znachenii $\zeta$-funktsii Rimana”, Tr. MIAN SSSR, 128, 1972, 131–150 | MR | Zbl
[3] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl
[4] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Thesis, Indian Statistical Institute, Calcutta, 1981
[5] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR
[6] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR
[7] A. Laurinchikas, L. Meshka, “Utochnenie neravenstva universalnosti”, Matem. zametki, 96:6 (2014), 905–910 | DOI | MR | Zbl
[8] J.-L. Mauclaire, “Universality of the Riemann zeta-function: two remarks”, Ann. Univ. Sci. Budapest. Sect. Comput., 39 (2013), 311–319 | MR
[9] Ł. Pańkowski, “Joint universality for dependent $L$-functions”, Ramanujan J., 45:1 (2018), 181–195 | DOI | MR
[10] A. Laurinčikas, R. Macaitien{. e}, D. Šiaučiūnas, “A generalization of the Voronin theorem”, Lith. Math. J., 59:2 (2019), 156–168 | DOI | MR
[11] A. Ivic̆, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function with Applications, John Wiley Sons, New York, 1985 | MR
[12] P. Bilingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[13] S. M. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (48) (1952), 31–122 | MR | Zbl