On a Generalization of Voronin's Theorem
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 400-411

Voir la notice de l'article provenant de la source Math-Net.Ru

Voronin's theorem states that the Riemann zeta-function $\zeta(s)$ is universal in the sense that all analytic functions that are defined and have no zeros on the right half of the critical strip can be approximated by the shifts $\zeta(s+i\tau)$, $\tau \in \mathbb{R}$. Some results on the approximation by the shifts $\zeta(s+i\varphi(\tau))$ with some function $\varphi(\tau)$ are also known. In this paper, it is established that an analytic function without zeros in the strip $1/2+1/(2\alpha)\operatorname{Re} s1$ can be approximated by the shifts $\zeta(s+i\log^\alpha \tau)$ with $\alpha >1$.
Keywords: Riemann zeta-function, limit theorem, Voronin's theorem, universality.
@article{MZM_2020_107_3_a6,
     author = {A. Laurin\v{c}ikas},
     title = {On a {Generalization} of {Voronin's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {400--411},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - On a Generalization of Voronin's Theorem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 400
EP  - 411
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/
LA  - ru
ID  - MZM_2020_107_3_a6
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T On a Generalization of Voronin's Theorem
%J Matematičeskie zametki
%D 2020
%P 400-411
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/
%G ru
%F MZM_2020_107_3_a6
A. Laurinčikas. On a Generalization of Voronin's Theorem. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 400-411. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a6/