Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_3_a5, author = {A. O. Ignatyev}, title = {On the {Existence} of {Homoclinic} {Orbits} in {Nonautonomous} {Second-Order} {Differential} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {391--399}, publisher = {mathdoc}, volume = {107}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/} }
TY - JOUR AU - A. O. Ignatyev TI - On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations JO - Matematičeskie zametki PY - 2020 SP - 391 EP - 399 VL - 107 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/ LA - ru ID - MZM_2020_107_3_a5 ER -
A. O. Ignatyev. On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 391-399. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/
[1] A. Puankare, Izbrannye trudy, t. II, Nauka, M., 1972
[2] L. P. Shilnikov, “Gomoklinicheskie traektorii: ot Puankare do nashikh dnei”, Matematika v vysshem obrazovanii, 5 (2007), 75–94
[3] V. K. Melnikov, “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. MMO, 12, GIFML, M., 1963, 3–52 | MR | Zbl
[4] T. M. Cherry, “Asymptotic solutions of analytic Hamiltonian systems”, J. Differential Equations, 4:2 (1968), 142–159 | DOI | MR
[5] R. P. Agarwal, A. Aghajani, V. Roomi, “Existence of homoclinic orbits for general planer dynamical systems of Liénard type”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18:2 (2012), 267–284 | MR
[6] A. F. Vakakis, M. F. A. Azeez, “Analytic approximation of the homoclinic orbits of the Lorenz system at $\sigma=10$, $b=8/3$ and $\rho=13.926\dots$”, Nonlinear Dynam., 15:3 (1998), 245–257 | DOI | MR
[7] L. A. Peletier, J. A. Rodriguez, “Homoclinic orbits to a saddle-center in a fourth-order differential equation”, J. Differential Equations, 203:2 (2004), 185–215 | DOI | MR
[8] J. B.Berg, M. Breden, J.-P. Lessard, M. Murray, “Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof”, J. Differential Equations, 264:5 (2018), 3086–3130 | DOI | MR
[9] Y. Ding, “Solutions to a class of Schrödinger equations”, Proc. Amer. Math. Soc., 130:3 (2002), 689–696 | DOI | MR
[10] P. H. Rabinowitz, “Homoclinic orbits for a class of Hamiltonian systems”, Proc. Roy. Soc. Edinburgh Sect. A, 114:1-2 (1990), 33–38 | DOI | MR
[11] C. O. Alves, P. C. Carriao, O. H. Miyagaki, “Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation”, Appl. Math. Lett., 16:5 (2003), 639–642 | DOI | MR
[12] P. Bartolo, V. Benci, D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity”, Nonlinear Anal., 7:9 (1983), 981–1012 | DOI | MR
[13] W. Omana, M. Willem, “Homoclinic orbits for a class of Hamiltonian systems”, Differential Integral Equations, 5:5 (1992), 1115–1120 | MR
[14] Z. Q. Qu, C. L. Tang, “Existence of homoclinic orbits for the second order Hamiltonian systems”, J. Math. Anal. Appl., 291:1 (2004), 203–213 | DOI
[15] X. H. Tang, X. Lin, “Homoclinic solutions for a class of second-order Hamiltonian systems”, J. Math. Anal. Appl., 354:2 (2009), 539–549 | DOI | MR
[16] X. H. Tang, L. Xiao, “Homoclinic solutions for a class of second-order Hamiltonian systems”, Nonlinear Anal., 71:3-4 (2009), 1140–1152 | DOI | MR
[17] R. Yuan, Z. Zhang, “Homoclinic solutions for a class of second order non-autonomous systems”, Electron. J. Differential Equations, 128 (2009), 1–9 | MR
[18] Z. Zhang, “Existence of homoclinic solutions for second order Hamiltonian systems with general potentials”, J. Appl. Math. Comput., 44:1-2 (2014), 263–272 | DOI | MR
[19] M. Izydorek, J. Janczewska, “Homoclinic solutions for a class of second order Hamiltonian systems”, J. Differential Equations, 219:2 (2005), 375–389 | DOI | MR
[20] C. C. Yin, F. B. Zhang, “Homoclinic orbits for the second-order Hamiltonian systems with obstacle item”, Sci. China Math., 53:11 (2010), 3005–3014 | DOI | MR