On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations
Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 391-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the second-order differential equation $\ddot x+f(t)\dot x+g(t)x=0$, the method of Lyapunov functions is used to obtain sufficient conditions for the existence of homoclinic trajectories, i.e., solutions $x(t)$$\dot x(t)$ satisfying the conditions $\lim_{t\to\pm\infty}x(t)=0$ and $\lim_{t\to\pm\infty}\dot x(t)=0$. The specific case in which all the solutions of this differential equation are homoclinic is considered.
Keywords: qualitative theory of differential equations, homoclinic trajectories, Lyapunov functions.
@article{MZM_2020_107_3_a5,
     author = {A. O. Ignatyev},
     title = {On the {Existence} of {Homoclinic} {Orbits} in {Nonautonomous} {Second-Order} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {391--399},
     publisher = {mathdoc},
     volume = {107},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/}
}
TY  - JOUR
AU  - A. O. Ignatyev
TI  - On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations
JO  - Matematičeskie zametki
PY  - 2020
SP  - 391
EP  - 399
VL  - 107
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/
LA  - ru
ID  - MZM_2020_107_3_a5
ER  - 
%0 Journal Article
%A A. O. Ignatyev
%T On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations
%J Matematičeskie zametki
%D 2020
%P 391-399
%V 107
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/
%G ru
%F MZM_2020_107_3_a5
A. O. Ignatyev. On the Existence of Homoclinic Orbits in Nonautonomous Second-Order Differential Equations. Matematičeskie zametki, Tome 107 (2020) no. 3, pp. 391-399. http://geodesic.mathdoc.fr/item/MZM_2020_107_3_a5/

[1] A. Puankare, Izbrannye trudy, t. II, Nauka, M., 1972

[2] L. P. Shilnikov, “Gomoklinicheskie traektorii: ot Puankare do nashikh dnei”, Matematika v vysshem obrazovanii, 5 (2007), 75–94

[3] V. K. Melnikov, “Ob ustoichivosti tsentra pri periodicheskikh po vremeni vozmuscheniyakh”, Tr. MMO, 12, GIFML, M., 1963, 3–52 | MR | Zbl

[4] T. M. Cherry, “Asymptotic solutions of analytic Hamiltonian systems”, J. Differential Equations, 4:2 (1968), 142–159 | DOI | MR

[5] R. P. Agarwal, A. Aghajani, V. Roomi, “Existence of homoclinic orbits for general planer dynamical systems of Liénard type”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 18:2 (2012), 267–284 | MR

[6] A. F. Vakakis, M. F. A. Azeez, “Analytic approximation of the homoclinic orbits of the Lorenz system at $\sigma=10$, $b=8/3$ and $\rho=13.926\dots$”, Nonlinear Dynam., 15:3 (1998), 245–257 | DOI | MR

[7] L. A. Peletier, J. A. Rodriguez, “Homoclinic orbits to a saddle-center in a fourth-order differential equation”, J. Differential Equations, 203:2 (2004), 185–215 | DOI | MR

[8] J. B.Berg, M. Breden, J.-P. Lessard, M. Murray, “Continuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof”, J. Differential Equations, 264:5 (2018), 3086–3130 | DOI | MR

[9] Y. Ding, “Solutions to a class of Schrödinger equations”, Proc. Amer. Math. Soc., 130:3 (2002), 689–696 | DOI | MR

[10] P. H. Rabinowitz, “Homoclinic orbits for a class of Hamiltonian systems”, Proc. Roy. Soc. Edinburgh Sect. A, 114:1-2 (1990), 33–38 | DOI | MR

[11] C. O. Alves, P. C. Carriao, O. H. Miyagaki, “Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation”, Appl. Math. Lett., 16:5 (2003), 639–642 | DOI | MR

[12] P. Bartolo, V. Benci, D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity”, Nonlinear Anal., 7:9 (1983), 981–1012 | DOI | MR

[13] W. Omana, M. Willem, “Homoclinic orbits for a class of Hamiltonian systems”, Differential Integral Equations, 5:5 (1992), 1115–1120 | MR

[14] Z. Q. Qu, C. L. Tang, “Existence of homoclinic orbits for the second order Hamiltonian systems”, J. Math. Anal. Appl., 291:1 (2004), 203–213 | DOI

[15] X. H. Tang, X. Lin, “Homoclinic solutions for a class of second-order Hamiltonian systems”, J. Math. Anal. Appl., 354:2 (2009), 539–549 | DOI | MR

[16] X. H. Tang, L. Xiao, “Homoclinic solutions for a class of second-order Hamiltonian systems”, Nonlinear Anal., 71:3-4 (2009), 1140–1152 | DOI | MR

[17] R. Yuan, Z. Zhang, “Homoclinic solutions for a class of second order non-autonomous systems”, Electron. J. Differential Equations, 128 (2009), 1–9 | MR

[18] Z. Zhang, “Existence of homoclinic solutions for second order Hamiltonian systems with general potentials”, J. Appl. Math. Comput., 44:1-2 (2014), 263–272 | DOI | MR

[19] M. Izydorek, J. Janczewska, “Homoclinic solutions for a class of second order Hamiltonian systems”, J. Differential Equations, 219:2 (2005), 375–389 | DOI | MR

[20] C. C. Yin, F. B. Zhang, “Homoclinic orbits for the second-order Hamiltonian systems with obstacle item”, Sci. China Math., 53:11 (2010), 3005–3014 | DOI | MR