Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_2_a6, author = {V. G. Mikayelyan}, title = {On a {Property} of the {Franklin} {System} in~$C[0,1]$ and $L^1[0,1]$}, journal = {Matemati\v{c}eskie zametki}, pages = {241--245}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a6/} }
V. G. Mikayelyan. On a Property of the Franklin System in~$C[0,1]$ and $L^1[0,1]$. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 241-245. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a6/
[1] M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1962 | MR | Zbl
[2] J. R. Holub, “Bounded completeness ans Schauder's basis for $C[0,1]$”, Glasgow Math. J., 28:1 (1986), 15–19 | DOI | MR | Zbl
[3] V. Kadets, “The Haar system in $L_1$ is monotonically boundedly complete”, Matem. fiz., anal., geom., 12:1 (2005), 103–106 | MR | Zbl
[4] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl
[5] S. V. Bočkarev, “Some inequalities for the Franklin series”, Anal. Math., 1:4 (1975), 249–257 | DOI | MR
[6] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27:3 (1966), 289–323 | DOI | MR | Zbl
[7] P. F. X. Müller, M. Passenbrunner, Almost Everywhere Convergence of Spline Sequences, 2019, arXiv: 1711.01859
[8] G. G. Gevorkyan, “O ryadakh po sisteme Franklina”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR | Zbl
[9] S. V. Bochkarev, “Suschestvovanie bazisa v prostranstve funktsii, analiticheskikh v kruge, i nekotorye svoistva sistemy Franklina”, Matem. sb., 95 (137):1 (9) (1974), 3–18 | MR | Zbl
[10] G. G. Gevorkyan, “Neogranichennost operatora sdviga po sisteme Franklina v prostranstve $L_1$”, Matem. zametki, 38:4 (1985), 523–533 | MR | Zbl