On a Property of the Franklin System in~$C[0,1]$ and $L^1[0,1]$
Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 241-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem posed by J. R. Holub is solved. In particular, it is proved that if $\{\widetilde f_n\}$ is the normalized Franklin system in $L^1[0,1]$, $\{a_n\}$ is a monotone sequence converging to zero, and $\sup_{n\in\mathbb N}\|{\sum_{k=0}^na_k\widetilde f_k}\|_1+\infty$, then the series $\sum_{n=0}^{\infty}a_n\widetilde f_n$ converges in $L^1[0,1]$. A similar result is also obtained for $C[0,1]$.
Keywords: Franklin system, bounded completeness, monotonically bounded completeness.
@article{MZM_2020_107_2_a6,
     author = {V. G. Mikayelyan},
     title = {On a {Property} of the {Franklin} {System} in~$C[0,1]$ and $L^1[0,1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {241--245},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a6/}
}
TY  - JOUR
AU  - V. G. Mikayelyan
TI  - On a Property of the Franklin System in~$C[0,1]$ and $L^1[0,1]$
JO  - Matematičeskie zametki
PY  - 2020
SP  - 241
EP  - 245
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a6/
LA  - ru
ID  - MZM_2020_107_2_a6
ER  - 
%0 Journal Article
%A V. G. Mikayelyan
%T On a Property of the Franklin System in~$C[0,1]$ and $L^1[0,1]$
%J Matematičeskie zametki
%D 2020
%P 241-245
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a6/
%G ru
%F MZM_2020_107_2_a6
V. G. Mikayelyan. On a Property of the Franklin System in~$C[0,1]$ and $L^1[0,1]$. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 241-245. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a6/

[1] M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin, 1962 | MR | Zbl

[2] J. R. Holub, “Bounded completeness ans Schauder's basis for $C[0,1]$”, Glasgow Math. J., 28:1 (1986), 15–19 | DOI | MR | Zbl

[3] V. Kadets, “The Haar system in $L_1$ is monotonically boundedly complete”, Matem. fiz., anal., geom., 12:1 (2005), 103–106 | MR | Zbl

[4] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl

[5] S. V. Bočkarev, “Some inequalities for the Franklin series”, Anal. Math., 1:4 (1975), 249–257 | DOI | MR

[6] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27:3 (1966), 289–323 | DOI | MR | Zbl

[7] P. F. X. Müller, M. Passenbrunner, Almost Everywhere Convergence of Spline Sequences, 2019, arXiv: 1711.01859

[8] G. G. Gevorkyan, “O ryadakh po sisteme Franklina”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR | Zbl

[9] S. V. Bochkarev, “Suschestvovanie bazisa v prostranstve funktsii, analiticheskikh v kruge, i nekotorye svoistva sistemy Franklina”, Matem. sb., 95 (137):1 (9) (1974), 3–18 | MR | Zbl

[10] G. G. Gevorkyan, “Neogranichennost operatora sdviga po sisteme Franklina v prostranstve $L_1$”, Matem. zametki, 38:4 (1985), 523–533 | MR | Zbl