Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_2_a4, author = {I. N. Katkovskaya and V. G. Krotov}, title = {On the {Continuity} of {Best} {Approximations} by {Constants} on {Balls} in {Metric} {Measure} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {221--228}, publisher = {mathdoc}, volume = {107}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a4/} }
TY - JOUR AU - I. N. Katkovskaya AU - V. G. Krotov TI - On the Continuity of Best Approximations by Constants on Balls in Metric Measure Spaces JO - Matematičeskie zametki PY - 2020 SP - 221 EP - 228 VL - 107 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a4/ LA - ru ID - MZM_2020_107_2_a4 ER -
I. N. Katkovskaya; V. G. Krotov. On the Continuity of Best Approximations by Constants on Balls in Metric Measure Spaces. Matematičeskie zametki, Tome 107 (2020) no. 2, pp. 221-228. http://geodesic.mathdoc.fr/item/MZM_2020_107_2_a4/
[1] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977 | DOI | MR | Zbl
[2] C. D. Aliprantis, K. C. Border, Infnite-Dimensional Analysis. A Hitchhiker's Guide, Springer-Verlag, Berlin, 1994 | MR
[3] I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: $L^p$ Spaces, Springer, New York, 2007 | MR
[4] V. G. Krotov, A. I. Porabkovich, “Otsenki $L^p$-ostsillyatsii funktsii pri $p>0$”, Matem. zametki, 97:3 (2015), 407–420 | DOI | MR | Zbl
[5] S. A. Bondarev, V. G. Krotov, “Fine properties of functions from Hajłasz–Sobolev classes $M^p_{\alpha}$, $p>0$, I. Lebesgue points”, Izv. NAN Armenii. Matem., 51:6 (2016), 3–22 | MR | Zbl
[6] S. A. Bondarev, V. G. Krotov, “Fine properties of functions from Hajłasz–Sobolev classes $M^p_{\alpha}$, $p>0$, II. Lusin's approximation”, Izv. NAN Armenii. Matem., 52:1 (2017), 26–37 | MR | Zbl
[7] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001 | MR | Zbl