On Lie Ideals and Automorphisms in Prime Rings
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 106-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a prime ring of characteristic different from $2$ with center $Z$ and extended centroid $C$, and let $L$ be a Lie ideal of $R$. Consider two nontrivial automorphisms $\alpha$ and $\beta$ of $R$ for which there exist integers $m,n\ge 1$ such that $\alpha(u)^n+\beta(u)^m=0$ for all $u\in L$. It is shown that, under these assumptions, either $L$ is central or $R\subseteq M_2(C)$ (where $M_2(C)$ is the ring of $2 \times 2$ matrices over $C$), $L$ is commutative, and $u^{2} \in Z$ for all $u \in L$. In particular, if $L = [R,R]$, then $R$ is commutative.
Keywords: prime ring, Lie ideal
Mots-clés : automorphism.
@article{MZM_2020_107_1_a8,
     author = {N. Rehman},
     title = {On {Lie} {Ideals} and {Automorphisms} in {Prime} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {106--111},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a8/}
}
TY  - JOUR
AU  - N. Rehman
TI  - On Lie Ideals and Automorphisms in Prime Rings
JO  - Matematičeskie zametki
PY  - 2020
SP  - 106
EP  - 111
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a8/
LA  - ru
ID  - MZM_2020_107_1_a8
ER  - 
%0 Journal Article
%A N. Rehman
%T On Lie Ideals and Automorphisms in Prime Rings
%J Matematičeskie zametki
%D 2020
%P 106-111
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a8/
%G ru
%F MZM_2020_107_1_a8
N. Rehman. On Lie Ideals and Automorphisms in Prime Rings. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 106-111. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a8/