On Lie Ideals and Automorphisms in Prime Rings
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 106-111
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a prime ring of characteristic different from $2$ with center $Z$ and extended centroid $C$, and let $L$ be a Lie ideal of $R$. Consider two nontrivial automorphisms $\alpha$ and $\beta$ of $R$ for which there exist integers $m,n\ge 1$ such that $\alpha(u)^n+\beta(u)^m=0$ for all $u\in L$. It is shown that, under these assumptions, either $L$ is central or $R\subseteq M_2(C)$ (where $M_2(C)$ is the ring of $2 \times 2$ matrices over $C$), $L$ is commutative, and $u^{2} \in Z$ for all $u \in L$. In particular, if $L = [R,R]$, then $R$ is commutative.
Keywords:
prime ring, Lie ideal
Mots-clés : automorphism.
Mots-clés : automorphism.
@article{MZM_2020_107_1_a8,
author = {N. Rehman},
title = {On {Lie} {Ideals} and {Automorphisms} in {Prime} {Rings}},
journal = {Matemati\v{c}eskie zametki},
pages = {106--111},
publisher = {mathdoc},
volume = {107},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a8/}
}
N. Rehman. On Lie Ideals and Automorphisms in Prime Rings. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 106-111. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a8/