The Median of the Number of Simple Paths on Three Vertices in the Random Graph
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 49-58

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the random variable equal to the number of simple paths on three vertices in the binomial random graph in which the edge probability equals the threshold probability of the appearance of such paths. We prove that, for any fixed nonnegative integer $b$ and a sufficiently large number $n$ of vertices of the graph, the probability that the number of simple paths on three vertices in the given random graph is $b$ decreases with $n$. As a consequence of this result, we obtain the median of the number of simple paths on three vertices for sufficiently large $n$.
Keywords: random graph, strictly balanced graphs, simple paths, medians, Ramanujan function.
Mots-clés : Poisson limit theorem
@article{MZM_2020_107_1_a4,
     author = {M. E. Zhukovskii},
     title = {The {Median} of the {Number} of {Simple} {Paths} on {Three} {Vertices} in the {Random} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a4/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
TI  - The Median of the Number of Simple Paths on Three Vertices in the Random Graph
JO  - Matematičeskie zametki
PY  - 2020
SP  - 49
EP  - 58
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a4/
LA  - ru
ID  - MZM_2020_107_1_a4
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%T The Median of the Number of Simple Paths on Three Vertices in the Random Graph
%J Matematičeskie zametki
%D 2020
%P 49-58
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a4/
%G ru
%F MZM_2020_107_1_a4
M. E. Zhukovskii. The Median of the Number of Simple Paths on Three Vertices in the Random Graph. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a4/