Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_1_a4, author = {M. E. Zhukovskii}, title = {The {Median} of the {Number} of {Simple} {Paths} on {Three} {Vertices} in the {Random} {Graph}}, journal = {Matemati\v{c}eskie zametki}, pages = {49--58}, publisher = {mathdoc}, volume = {107}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a4/} }
M. E. Zhukovskii. The Median of the Number of Simple Paths on Three Vertices in the Random Graph. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a4/
[1] B. Bollobás, Random Graphs, Cambridge Stud. Adv. Math., 73, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[2] A. N. Egorova, M. E. Zhukovskii, “Disproof of the zero-one law for existential monadic properties of a spare binomial random graph”, Dokl. Math., 99:1 (2019), 68–70 | DOI | Zbl
[3] S. Janson, T. Łuczak, A. Ruciński, Random Graphs, Wiley-Interscience, New York, 2000 | MR | Zbl
[4] A. S. Razafimahatrata, M. Zhukovskii, “Zero-one laws for $k$-variable first-order logic of sparse random graphs”, Discrete Appl. Math., 2019 (to appear) | DOI
[5] M. E. Zhukovskii, A. M. Raigorodskii, “Sluchainye grafy: modeli i predelnye kharakteristiki”, UMN, 70:1 (421) (2015), 35–88 | DOI | MR | Zbl
[6] S. Kargaltsev, D. Shabanov, T. Shaikheeva, “Two values of the chromatic number of a sparse random graph”, Acta Math. Univ. Comenianae, 88:3 (2019), 849–854
[7] A. Ruciński, A. Vince, “Balanced graphs and the problem of subgraphs of a random graph”, Congr. Numer., 49 (1985), 181–190 | MR | Zbl
[8] B. Bollobás, “Threshold functions for small subgraphs”, Math. Proc. Cambridge Philos. Soc., 90:2 (1981), 197–206 | DOI | MR | Zbl
[9] A. V. Burkin, M. E. Zhukovskii, “Malye podgrafy i ikh rasshireniya v sluchainom distantsionnom grafe”, Matem. sb., 209:2 (2018), 22–46 | DOI | Zbl
[10] S. D. Tilga, “O raspredelenii malykh podgrafov v sluchainom grafe Bakli–Ostgusa”, Izv. RAN. Ser. matem., 81:2 (2017), 161–214 | DOI | MR | Zbl
[11] J. H. Kim, B. Sudakov, V. Vu, “Small subgraphs of random regular graphs”, Discrete Math., 307:15 (2007), 1961–1967 | MR | Zbl
[12] S. Kiselev, A. Kupavskii, “Sharp bounds for the chromatic number of random Kneser graphs”, Acta Math. Univ. Comenianae, 88:3 (2019), 861–865
[13] K. P. Choi, “On the medians of Gamma distributions and an equation of Ramanujan”, Proc. Amer. Math. Soc., 121:1 (1994), 245–251 | DOI | MR | Zbl
[14] S. Ramanujan, “Some properties of Bernoulli's numbers”, J. Indian Math. Soc., 3 (1911), 219–234 | Zbl
[15] G. Szegő, “Űber einige von S. Ramanujan Gestellte Aufgaben”, J. London Math. Soc., 3:3 (1928), 225–232 | DOI | MR | Zbl
[16] G. N. Watson, “Theorems stated by Ramanujan (V): Approximations connected with $e^x$”, Proc. London Math. Soc. (2), 29:4 (1927), 293–308 | MR
[17] K. Hamza, “The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions”, Statist. Probab. Lett., 23:1 (1995), 21–25 | DOI | MR | Zbl
[18] R. Kaas, J. M. Buhrman, “Mean, median and mode in binomial distributions”, Statist. Neerlandica, 34:1 (1980), 13–18 | DOI | MR | Zbl
[19] O. Riordan, L. Warnke, “The Janson inequalities for general up-sets”, Random Structures Algorithms, 46:2 (2015), 391–395 | DOI | MR | Zbl
[20] W. Feller, “On the normal approximation to the binomial distribution”, Ann. Math. Statistics, 16 (1945), 319–329 | DOI | MR | Zbl
[21] B. C. Berndt, R. A. Rankin, Ramanujan: Letters and Commentary, Amer. Math. Soc., Providence, RI, 1995 | Zbl
[22] P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger, “On Ramanujan's $Q$-function”, J. Comput. Appl. Math., 58:1 (1995), 103–116 | DOI | MR | Zbl
[23] S. E. Alm, “Monotonicity of the difference between median and mean of gamma distributions and of a related Ramanujan sequence”, Bernoulli, 9:2 (2003), 351–371 | DOI | MR | Zbl
[24] H. Alzer, “On Ramanujan's inequalities for $\exp(k)$”, J. London Math. Soc. (2), 69:3 (2004), 639–656 | DOI | MR | Zbl
[25] K. Jodgeo, S. M. Samuels, “Monotone convergence of binomial probabilities and a generalization of Ramanujan's equation”, Ann. of Math. Stat., 39:4 (1968), 1191–1195 | DOI