Computational Experiments with Nilpotent Lie Algebras
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 23-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results of computer experiments on the study of properties of generic Lie subalgebras with two generators in the Lie algebra of nilpotent matrices whose order does not exceed 10 are presented. The calculations carried out have made it possible to formulate several statements (so-called virtual theorems) on properties of the Lie subalgebras in question. The dimensions of the lower and upper central series and of the series of commutator subalgebras and the characteristic nilpotency property of the Lie subalgebras constructed here and of generic Lie subalgebras of codimension 1 in these Lie subalgebras are studied.
Keywords: nilpotent Lie algebra, characteristically nilpotent Lie algebra, filiform Lie algebra.
Mots-clés : matrix Lie algebra
@article{MZM_2020_107_1_a2,
     author = {V. V. Gorbatsevich},
     title = {Computational {Experiments} with {Nilpotent} {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Computational Experiments with Nilpotent Lie Algebras
JO  - Matematičeskie zametki
PY  - 2020
SP  - 23
EP  - 31
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a2/
LA  - ru
ID  - MZM_2020_107_1_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Computational Experiments with Nilpotent Lie Algebras
%J Matematičeskie zametki
%D 2020
%P 23-31
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a2/
%G ru
%F MZM_2020_107_1_a2
V. V. Gorbatsevich. Computational Experiments with Nilpotent Lie Algebras. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a2/

[1] M. Goze, Yu. Khakimjanov, Nilpotent Lie Algebras, Math. Appl., 361, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[2] GAP, http://www.gap-system.org

[3] E. Luks, “What is the typical nilpotent Lie algebra?”, Computers in the Study of Non-Associative Rings and Algebras, Academic Press, New York, 1976, 189–207 | MR

[4] R. Carles, “Sur la structure des algebres de Lie rigides”, Ann. Inst. Fourier (Grenoble), 34:3 (1984), 65–82 | DOI | MR | Zbl

[5] N. Burbaki, Gruppy i algebry Li. Gl. 1–3. Algebry Li, svobodnye algebry Li i gruppy Li, Elementy matematiki, Mir, M., 1976 | MR | Zbl

[6] V. Gorbatsevich, Computational Experiments with Nilpotent Lie Algebra, arXiv: math.RA/1609.06493