Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_1_a2, author = {V. V. Gorbatsevich}, title = {Computational {Experiments} with {Nilpotent} {Lie} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {23--31}, publisher = {mathdoc}, volume = {107}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a2/} }
V. V. Gorbatsevich. Computational Experiments with Nilpotent Lie Algebras. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a2/
[1] M. Goze, Yu. Khakimjanov, Nilpotent Lie Algebras, Math. Appl., 361, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl
[2] GAP, http://www.gap-system.org
[3] E. Luks, “What is the typical nilpotent Lie algebra?”, Computers in the Study of Non-Associative Rings and Algebras, Academic Press, New York, 1976, 189–207 | MR
[4] R. Carles, “Sur la structure des algebres de Lie rigides”, Ann. Inst. Fourier (Grenoble), 34:3 (1984), 65–82 | DOI | MR | Zbl
[5] N. Burbaki, Gruppy i algebry Li. Gl. 1–3. Algebry Li, svobodnye algebry Li i gruppy Li, Elementy matematiki, Mir, M., 1976 | MR | Zbl
[6] V. Gorbatsevich, Computational Experiments with Nilpotent Lie Algebra, arXiv: math.RA/1609.06493