On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 11-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the family of rearrangement invariant spaces $E$ containing subspaces on which the $E$-norm is equivalent to the $L_1$-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space $E$ can be equipped with an equivalent norm with respect to which $E$ contains a nonzero function orthogonal to the separable part of $E$.
Keywords: rearrangement invariant space, Köthe dual space, subspace.
Mots-clés : Marcinkiewicz space
@article{MZM_2020_107_1_a1,
     author = {S. V. Astashkin and E. M. Semenov},
     title = {On a {Property} of {Rearrangement} {Invariant} {Spaces} whose {Second} {K\"othe} {Dual} is {Nonseparable}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - E. M. Semenov
TI  - On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable
JO  - Matematičeskie zametki
PY  - 2020
SP  - 11
EP  - 22
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/
LA  - ru
ID  - MZM_2020_107_1_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A E. M. Semenov
%T On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable
%J Matematičeskie zametki
%D 2020
%P 11-22
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/
%G ru
%F MZM_2020_107_1_a1
S. V. Astashkin; E. M. Semenov. On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 11-22. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/

[1] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[2] E. V. Tokarev, “O podprostranstvakh nekotorykh simmetrichnykh prostranstv”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 24, Kharkov, 1975, 156–161 | MR | Zbl

[3] M. I. Kadec, A. Pełczyński, “Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$”, Studia Math., 21 (1962), 161–176 | DOI | MR | Zbl

[4] S. Ya. Novikov, E. M. Semenov, E. V. Tokarev, “Struktura podprostranstv prostranstv $\Lambda_p$”, Dokl. AN SSSR, 247:3 (1979), 552–554 | MR | Zbl

[5] S. Ya. Novikov, E. M. Semenov, E. V. Tokarev, “O strukture podprostranstv prostranstv $\Lambda_p(\mu)$”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 42, Kharkov, 1984, 91–97 | MR | Zbl

[6] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approximation Theory, 13 (1975), 395–412 | DOI | MR | Zbl

[7] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[8] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR | Zbl

[9] S. V. Astashkin, “$\Lambda(p)$-spaces”, J. Funct. Anal., 266:8 (2014), 5174–5198 | DOI | MR | Zbl

[10] S. Ya. Novikov, Geometricheskie svoistva simmetrichnykh prostranstv, Dis. $\dots$ kand. fiz.-matem. nauk, Voronezh, 1980

[11] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math., 129, Academic Press, Boston, 1988 | MR | Zbl

[12] S. V. Astashkin, Sistema Rademakhera v funktsionalnykh prostranstvakh, Fizmatlit, M., 2017

[13] G. Ya. Lozanovskii, “O proektorakh v nekotorykh banakhovykh strukturakh”, Matem. zametki, 4:1 (1968), 41–44 | MR | Zbl

[14] P. P. Zabreiko, “Idealnye prostranstva funktsii. I”, Vestn. Yaroslavskogo gos. un-ta, 1974, no. 8, 12–52

[15] S. V. Astashkin, F. A. Sukochev, “Sequences of independent identically distributed functions in rearrangement invariant spaces”, Function Spaces VIII, Banach Center Publ., 79, Polish Acad. Sci. Inst. Math., Warszawa, 2008, 27–37 | MR | Zbl

[16] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[17] D. J. Aldous, D. H. Fremlin, “Colacunary sequences in $L$-spaces”, Stud. Math., 71 (1982), 297–304 | DOI | MR | Zbl

[18] Y. Raynaud, “Complemented Hilbertian subspaces in rearrangement invariant function spaces”, Illinois J. Math., 39:2 (1995), 212–250 | DOI | MR | Zbl