On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 11-22
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the family of rearrangement invariant spaces $E$ containing subspaces on which the $E$-norm is equivalent to the $L_1$-norm and a certain geometric characteristic related to the Kadec–Pełcziński alternative is extremal. We prove that, after passing to an equivalent norm, any space with nonseparable second Köthe dual belongs to this family. In the course of the proof, we show that every nonseparable rearrangement invariant space $E$ can be equipped with an equivalent norm with respect to which $E$ contains a nonzero function orthogonal to the separable part of $E$.
Keywords:
rearrangement invariant space, Köthe dual space, subspace.
Mots-clés : Marcinkiewicz space
Mots-clés : Marcinkiewicz space
@article{MZM_2020_107_1_a1,
author = {S. V. Astashkin and E. M. Semenov},
title = {On a {Property} of {Rearrangement} {Invariant} {Spaces} whose {Second} {K\"othe} {Dual} is {Nonseparable}},
journal = {Matemati\v{c}eskie zametki},
pages = {11--22},
publisher = {mathdoc},
volume = {107},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/}
}
TY - JOUR AU - S. V. Astashkin AU - E. M. Semenov TI - On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable JO - Matematičeskie zametki PY - 2020 SP - 11 EP - 22 VL - 107 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/ LA - ru ID - MZM_2020_107_1_a1 ER -
S. V. Astashkin; E. M. Semenov. On a Property of Rearrangement Invariant Spaces whose Second K\"othe Dual is Nonseparable. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 11-22. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a1/