Forms of the Segre Cubic
Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The forms of the Segre cubic over non-algebraically closed fields, their automorphisms groups, and equivariant birational rigidity are studied. In particular, it is shown that all forms of the Segre cubic over any field have a point and are cubic hypersurfaces.
Keywords: forms of manifolds, birational rigidity.
Mots-clés : automorphism group
@article{MZM_2020_107_1_a0,
     author = {A. Avilov},
     title = {Forms of the {Segre} {Cubic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a0/}
}
TY  - JOUR
AU  - A. Avilov
TI  - Forms of the Segre Cubic
JO  - Matematičeskie zametki
PY  - 2020
SP  - 3
EP  - 10
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a0/
LA  - ru
ID  - MZM_2020_107_1_a0
ER  - 
%0 Journal Article
%A A. Avilov
%T Forms of the Segre Cubic
%J Matematičeskie zametki
%D 2020
%P 3-10
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a0/
%G ru
%F MZM_2020_107_1_a0
A. Avilov. Forms of the Segre Cubic. Matematičeskie zametki, Tome 107 (2020) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MZM_2020_107_1_a0/

[1] I. Dolgachev, “Corrado Segre and nodal cubic threefolds”, From Classical to Modern Algebraic Geometry, Birkhäuser, Basel, 2016, 429–450 | MR | Zbl

[2] S. Mukai, “Igusa quartic and Steiner surfaces”, Compact Moduli Spaces and Vector Bundles, Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012, 205–210 | DOI | MR | Zbl

[3] H. Finkelnberg, “Small resolutions of the Segre cubic”, Nederl. Akad. Wetensch. Indag. Math., 49:3 (1987), 261–277 | DOI | MR | Zbl

[4] A. Avilov, “Automorphisms of singular three-dimensional cubic hypersurfaces”, Eur. J. Math., 4:3 (2018), 761–777 | DOI | MR | Zbl

[5] I. V. Dolgachev, “Abstract configurations in algebraic geometry”, The Fano Conference, Univ. Torino, Turin, 2004, 423–462 | MR | Zbl

[6] A. A. Avilov, “Biregulyarnaya i biratsionalnaya geometriya dvoinykh nakrytii proektivnogo prostranstva s vetvleniem v kvartike s 15 obyknovennymi dvoinymi tochkami”, Izv. RAN. Ser. matem., 83:3 (2019), 5–14 | DOI | Zbl

[7] Yu. G. Prokhorov, “Fields of invariants of finite linear groups”, Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser Boston, Boston, MA, 2010, 245–273 | MR | Zbl

[8] Yu. G. Prokhorov, Ratsionalnye poverkhnosti, Lekts. kursy NOTs, 24, MIAN, M., 2015 | DOI

[9] D. F. Coray, “Cubic hypersurfaces and a result of Hermite”, Duke Math. J., 54:2 (1987), 657–670 | DOI | MR | Zbl

[10] S. O. Gorchinskii, K. A. Shramov, Nerazvetvlennaya gruppa Brauera i ee prilozheniya, MTsNMO, M., 2018

[11] A. S. Merkurev, A. A. Suslin, “$K$-kogomologii mnogoobrazii Severi–Brauera i gomomorfizm normennogo vycheta”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1011–1046 | MR | Zbl

[12] J.-P. Serre, Galois Cohomology, Springer-Verlag, Berlin, 1997 | MR | Zbl

[13] A. Corti, “Singularities of linear systems and 3-fold birational geometry”, Explicit Birational Geometry of 3-Folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 259–312 | MR | Zbl

[14] I. Cheltsov, C. Shramov, Cremona Groups and the Icosahedron, CRC Press, Boca Raton, FL, 2016 | MR | Zbl

[15] C. Hacon, C. Xu, “On the three dimensional minimal model program in positive characteristic”, J. Amer. Math. Soc., 28:3 (2015), 711–744 | DOI | MR | Zbl

[16] J. Kollár, “Birational Rigidity of Fano Varieties and Field Extensions”, Mnogomernaya algebraicheskaya geometriya, Tr. MIAN, 264, MAIK «Nauka/Interperiodika», M., 2009, 103–108 | MR