Weak Closure of Infinite Actions of Rank~1, Joinings, and Spectrum
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 894-903.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the ergodic self-joining of an infinite transformation of rank $1$ is part of the weak limit of shifts of a diagonal measure. A continuous class of nonisomorphic transformations with polynomial closure is proposed. These transformations possess minimal self-joinings and certain unusual spectral properties. Thus, for example, the tensor products of the powers of transformations have both a singular and a Lebesgue spectrum, depending on the choice of the power.
Keywords: measure-preserving transformations, weak closure, actions of rank $1$, minimal self-joining, spectrum.
@article{MZM_2019_106_6_a9,
     author = {V. V. Ryzhikov},
     title = {Weak {Closure} of {Infinite} {Actions} of {Rank~1,} {Joinings,} and {Spectrum}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--903},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a9/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Weak Closure of Infinite Actions of Rank~1, Joinings, and Spectrum
JO  - Matematičeskie zametki
PY  - 2019
SP  - 894
EP  - 903
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a9/
LA  - ru
ID  - MZM_2019_106_6_a9
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Weak Closure of Infinite Actions of Rank~1, Joinings, and Spectrum
%J Matematičeskie zametki
%D 2019
%P 894-903
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a9/
%G ru
%F MZM_2019_106_6_a9
V. V. Ryzhikov. Weak Closure of Infinite Actions of Rank~1, Joinings, and Spectrum. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 894-903. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a9/

[1] D. Rudolph, “An example of measure-preserving map with minimal self-joinings, and applications”, J. Analyse Math., 35:1 (1979), 97–122 | DOI | MR

[2] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[3] J. King, “The commutant is the weak closure of the powers, for rank-$1$ transformations”, Ergodic Theory Dynam. Systems, 6:3 (1986), 363–384 | DOI | MR

[4] V. V. Ryzhikov, Zh.-P. Tuveno, “O tsentralizatore beskonechnogo peremeshivayuschego preobrazovaniya ranga odin”, Funkts. analiz i ego pril., 49:3 (2015), 88–91 | DOI

[5] I. V. Klimov, V. V. Ryzhikov, “Minimalnye samoprisoedineniya beskonechnykh peremeshivayuschikh deistvii ranga 1”, Matem. zametki, 102:6 (2017), 851–856 | DOI

[6] A. Yu. Kushnir, V. V. Ryzhikov, “Slabye zamykaniya ergodicheskikh deistvii”, Matem. zametki, 100:6 (2016), 847–854 | DOI | MR

[7] Yu. A. Neretin, “O sootvetstvii mezhdu bozonnym prostranstvom Foka i prostranstvom $L^2$ po mere Puassona”, Matem. sb., 188:11 (1997), 19–50 | DOI | MR | Zbl

[8] V. I. Oseledets, “Avtomorfizm s prostym i nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | MR | Zbl

[9] A. B. Katok, Ya. G. Sinai, A. M. Stepin, “Teoriya dinamicheskikh sistem i obschikh grupp preobrazovanii s invariantnoi meroi”, Itogi nauki i tekhn. Ser. Mat. anal., 13, VINITI, M., 1975, 129–262 | MR | Zbl

[10] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR

[11] M. S. Lobanov, V. V. Ryzhikov, “Spetsialnye slabye predely i prostoi spektr tenzornykh proizvedenii potokov”, Matem. sb., 209:5 (2018), 62–73 | DOI

[12] I. V. Klimov, “Prostoi spektr tenzornykh proizvedenii i tipichnye svoistva sokhranyayuschikh meru potokov”, Matem. zametki, 104:6 (2018), 942–944 | DOI