On the Volumes of Hyperbolic Simplices
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 866-880

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an explicit formula for calculating the volume of an arbitrary hyperbolic 4-simplex in terms of the coordinates of its vertices; by this formula, the volume can be expressed in terms of one-dimensional integrals of real-valued integrands over closed intervals of the real line. In addition, it is proved in the paper that the volume of a hyperbolic 5-simplex cannot be expressed as the double integral of an elementary function of the coordinates of its vertices (of edge lengths).
Mots-clés : volume, simplex
Keywords: hyperbolic space.
@article{MZM_2019_106_6_a7,
     author = {V. A. Krasnov},
     title = {On the {Volumes} of {Hyperbolic} {Simplices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {866--880},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the Volumes of Hyperbolic Simplices
JO  - Matematičeskie zametki
PY  - 2019
SP  - 866
EP  - 880
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/
LA  - ru
ID  - MZM_2019_106_6_a7
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the Volumes of Hyperbolic Simplices
%J Matematičeskie zametki
%D 2019
%P 866-880
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/
%G ru
%F MZM_2019_106_6_a7
V. A. Krasnov. On the Volumes of Hyperbolic Simplices. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 866-880. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/