On the Volumes of Hyperbolic Simplices
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 866-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an explicit formula for calculating the volume of an arbitrary hyperbolic 4-simplex in terms of the coordinates of its vertices; by this formula, the volume can be expressed in terms of one-dimensional integrals of real-valued integrands over closed intervals of the real line. In addition, it is proved in the paper that the volume of a hyperbolic 5-simplex cannot be expressed as the double integral of an elementary function of the coordinates of its vertices (of edge lengths).
Mots-clés : volume, simplex
Keywords: hyperbolic space.
@article{MZM_2019_106_6_a7,
     author = {V. A. Krasnov},
     title = {On the {Volumes} of {Hyperbolic} {Simplices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {866--880},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the Volumes of Hyperbolic Simplices
JO  - Matematičeskie zametki
PY  - 2019
SP  - 866
EP  - 880
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/
LA  - ru
ID  - MZM_2019_106_6_a7
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the Volumes of Hyperbolic Simplices
%J Matematičeskie zametki
%D 2019
%P 866-880
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/
%G ru
%F MZM_2019_106_6_a7
V. A. Krasnov. On the Volumes of Hyperbolic Simplices. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 866-880. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a7/

[1] L. Schläfli, Theorie der vielfachen Kontinuität, Zürich, 1901 | Zbl

[2] N. I. Lobachevskii, Voobrazhaemaya geometriya, Universitetskaya tipografiya, Kazan, 1835

[3] J. Bolyai, Appendix. The Theory of Space, North-Holland Publ., Amsterdam, 1987 | MR

[4] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc. (N.S.), 6:1 (1982), 9–24 | DOI | MR

[5] E. B. Vinberg, “Ob'emy neevklidovykh mnogogrannikov”, UMN, 48:2 (290) (1993), 17–46 | MR | Zbl

[6] Y. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22:3 (1999), 347–366 | DOI | MR

[7] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13:2 (2005), 379–400 | DOI | MR

[8] A. Ushijima, “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclidean Geometries, Math. Appl. (N. Y.), 581, Springer, New York, 2006, 249–265 | DOI | MR

[9] D. A. Derevnin, A. D. Mednykh, “O formule ob'ema giperbolicheskogo tetraedra”, UMN, 60:2 (362) (2005), 159–160 | DOI | MR | Zbl

[10] J. Murakami, The Volume Formulas for a Spherical Tetrahedron, 2011, arXiv: 1011.2584v4

[11] I. Kh. Sabitov, “Ob odnom metode vychisleniya ob'emov tel”, Sib. elektron. matem. izv., 10 (2013), 615–626 | MR

[12] I. Kh. Sabitov, “Giperbolicheskii tetraedr: vychislenie ob'ema s primeneniem k dokazatelstvu formuly Shlefli”, Model. i analiz inform. sistem, 20:6 (2013), 149–161

[13] J. Böhm, “Inhaltsmessung im $\mathbb{R}^5$ konstanter Krümmung”, Arch. Math. (Basel), 11 (1960), 298–309 | DOI | MR

[14] R. Kellerhals, Ueber den Inhalt hyperbolischer Polyeder in den Dimensionen drei und vier, Inauguraldissertation, Math. Inst. Univ. Basel, Basel, 1988

[15] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl