New Examples of Locally Algebraically Integrable Bodies
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 848-853.

Voir la notice de l'article provenant de la source Math-Net.Ru

Any compact body with regular boundary in ${\mathbb R}^N$ defines a two-valued function on the space of affine hyperplanes: the volumes of the two parts into which these hyperplanes cut the body. This function is never algebraic if $N$ is even and is very rarely algebraic if $N$ is odd: all known bodies defining algebraic volume functions are ellipsoids (and have been essentially found by Archimedes for $N=3$). We demonstrate a new series of locally algebraically integrable bodies with algebraic boundaries in spaces of arbitrary dimensions, that is, of bodies such that the corresponding volume functions coincide with algebraic ones in some open domains of the space of hyperplanes intersecting the body.
Keywords: integral geometry, algebraic function, algebraic integrability.
Mots-clés : lacuna
@article{MZM_2019_106_6_a4,
     author = {V. A. Vassiliev},
     title = {New {Examples} of {Locally} {Algebraically} {Integrable} {Bodies}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {848--853},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a4/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - New Examples of Locally Algebraically Integrable Bodies
JO  - Matematičeskie zametki
PY  - 2019
SP  - 848
EP  - 853
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a4/
LA  - ru
ID  - MZM_2019_106_6_a4
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T New Examples of Locally Algebraically Integrable Bodies
%J Matematičeskie zametki
%D 2019
%P 848-853
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a4/
%G ru
%F MZM_2019_106_6_a4
V. A. Vassiliev. New Examples of Locally Algebraically Integrable Bodies. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 848-853. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a4/

[1] V. I. Arnol'd, V. A. Vasil'ev, “Newton's Principia read 300 years later”, Notices Amer. Math. Soc., 36:9 (1989), 1148–1154 | MR

[2] V. A. Vassiliev, “Lacunas and local algebraicity of volume functions”, J. Singul., 18 (2018), 350–357 | MR

[3] M. F. Atiyah, R. Bott, L. Gårding, “Lacunas for hyperbolic differential operators with constant coefficients. II”, Acta Math., 131 (1973), 145–206 | DOI | MR

[4] V.A. Vassiliev, Applied Picard–Lefschetz Theory, Amer. Math. Soc., Providence, RI, 2002 | MR

[5] Archimedes https://www.stmarys-ca.edu/sites/default/files/attachments/files/On_Conoids_and_Spheroids.pdf

[6] I. S. Newton, Philosophiae Naturalis Principia Mathematica, William Dawson Sons, London | MR

[7] V. I. Arnold, Arnold's Problems, Springer-Verlag, 2004 | MR

[8] V.A. Vassiliev, “Newton's lemma XXVIII on integrable ovals in higher dimensions and reflection groups”, Bull. Lond. Math. Soc., 47:2 (2015), 290–300 | DOI | MR

[9] I. Petrowsky, “On the diffusion of waves and the lacunas for hyperbolic equations”, Matem. sb., 17 (59):3 (1945), 289–370 | MR | Zbl