Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_6_a4, author = {V. A. Vassiliev}, title = {New {Examples} of {Locally} {Algebraically} {Integrable} {Bodies}}, journal = {Matemati\v{c}eskie zametki}, pages = {848--853}, publisher = {mathdoc}, volume = {106}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a4/} }
V. A. Vassiliev. New Examples of Locally Algebraically Integrable Bodies. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 848-853. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a4/
[1] V. I. Arnol'd, V. A. Vasil'ev, “Newton's Principia read 300 years later”, Notices Amer. Math. Soc., 36:9 (1989), 1148–1154 | MR
[2] V. A. Vassiliev, “Lacunas and local algebraicity of volume functions”, J. Singul., 18 (2018), 350–357 | MR
[3] M. F. Atiyah, R. Bott, L. Gårding, “Lacunas for hyperbolic differential operators with constant coefficients. II”, Acta Math., 131 (1973), 145–206 | DOI | MR
[4] V.A. Vassiliev, Applied Picard–Lefschetz Theory, Amer. Math. Soc., Providence, RI, 2002 | MR
[5] Archimedes https://www.stmarys-ca.edu/sites/default/files/attachments/files/On_Conoids_and_Spheroids.pdf
[6] I. S. Newton, Philosophiae Naturalis Principia Mathematica, William Dawson Sons, London | MR
[7] V. I. Arnold, Arnold's Problems, Springer-Verlag, 2004 | MR
[8] V.A. Vassiliev, “Newton's lemma XXVIII on integrable ovals in higher dimensions and reflection groups”, Bull. Lond. Math. Soc., 47:2 (2015), 290–300 | DOI | MR
[9] I. Petrowsky, “On the diffusion of waves and the lacunas for hyperbolic equations”, Matem. sb., 17 (59):3 (1945), 289–370 | MR | Zbl