On the Parametrization of an Algebraic Curve
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 837-847.

Voir la notice de l'article provenant de la source Math-Net.Ru

At present, a plane algebraic curve can be parametrized in the following two cases: if its genus is equal to 0 or 1 and if it has a large group of birational automorphisms. Here we propose a new polyhedron method (involving a polyhedron called a Hadamard polyhedron by the author), which allows us to divide the space $\mathbb R^2$ or $\mathbb C^2$ into pieces in each of which the polynomial specifying the curve is sufficiently well approximated by its truncated polynomial, which often defines the parametrized curve. This approximate parametrization in a piece can be refined by means of the Newton method. Thus, an arbitrarily exact piecewise parametrization of the original curve can be obtained.
Keywords: algebraic curve, genus of a curve, piecewise parametrization, Hadamard polyhedron, Newton method.
@article{MZM_2019_106_6_a3,
     author = {A. D. Bruno},
     title = {On the {Parametrization} of an {Algebraic} {Curve}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {837--847},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a3/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - On the Parametrization of an Algebraic Curve
JO  - Matematičeskie zametki
PY  - 2019
SP  - 837
EP  - 847
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a3/
LA  - ru
ID  - MZM_2019_106_6_a3
ER  - 
%0 Journal Article
%A A. D. Bruno
%T On the Parametrization of an Algebraic Curve
%J Matematičeskie zametki
%D 2019
%P 837-847
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a3/
%G ru
%F MZM_2019_106_6_a3
A. D. Bruno. On the Parametrization of an Algebraic Curve. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 837-847. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a3/

[1] K. Fukuda, “Exact algorithms and software in optimization and polyhedral computation”, XXI International Symposium on Symbolic and Algebraic Computations, ACM, New York, 2008, 333–334 | MR

[2] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, “The Quickhull algorithm for convex hulls”, ACM Trans. Math. Software, 22:4 (1996), 469–483 | DOI | MR

[3] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, 14, Nauka, M., 1967 | MR | Zbl

[4] Yu. V. Brezhnev, “On uniformization of algebraic curves”, Mosc. Math. J., 8:2 (2008), 233–271 | DOI | MR | Zbl

[5] Yu. V. Brezhnev, “On uniformization of Burnside's curve $y^2=x^5-x$”, J. Math. Phys., 50:10 (2009), 103519 | DOI | MR

[6] Yu. V. Brezhnev, “The sixth Painlevé transcendent and uniformization of algebraic curves”, J. Differential Equations, 260:3 (2016), 2507–2556 | DOI | MR

[7] E. D. Belokolos, V. Z. Enolskii, “Reduction of abelian functions and algebraically integrable systems. I”, J. Math. Sci. (New York), 106:6 (2001), 3395–3486 | DOI | MR

[8] E. D. Belokolos, V. Z. Enolskii, “Reduction of abelian functions and algebraically integrable systems. II”, J. Math. Sci. (New York), 108:3 (2002), 295–374 | DOI | MR

[9] Y. Ônishi, “Complex multiplication formulae for hyperelliptic curves of genus three”, Tokyo J. Math., 21:2 (1998), 381–431 | DOI | MR

[10] A. I. Aptekarev, D. N. Tulyakov, M. L. Yattselev, “O parametrizatsii odnoi kompleksnoi algebraicheskoi krivoi roda 2”, Matem. zametki, 98:5 (2015), 782–785 | DOI | MR

[11] A. I. Aptekarev, D. N. Toulyakov, W. Van Assche, “Hyperelliptic uniformization of algebraic curves of third order”, J. Comput. Appl. Math., 284 (2015), 38–49 | DOI | MR

[12] R. Uoker, Algebraicheskie krivye, Knizhnyi dom “LIBROKOM”, M., 2009 | MR

[13] J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Ônishi, E. Previato, “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not. IMRN, 2008, no. 1, Art. ID rnm140 | MR

[14] J. C. Eilbeck, Weierstrass Functions for Higher Genus Curves, , 2011 http://www.ma.hw.ac.uk/Weierstrass

[15] A. D. Bruno, “Algorithms for solving an algebraic equation”, Program. Comput. Softw., 44:6 (2018), 533–545 | DOI | MR