Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 904-916.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the equivalence of a vector and a scalar equilibrium problem that naturally arise when studying the limit distribution of zeros of type I Hermite–Padé polynomials for a pair of functions forming a Nikishin system.
Keywords: Nikishin system, Hermite–Padé polynomials, equilibrium problem, potential theory, Riemann surface.
@article{MZM_2019_106_6_a10,
     author = {S. P. Suetin},
     title = {Equivalence of a {Scalar} and a {Vector} {Equilibrium} {Problem} for a {Pair} of {Functions} {Forming} a {Nikishin} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--916},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a10/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System
JO  - Matematičeskie zametki
PY  - 2019
SP  - 904
EP  - 916
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a10/
LA  - ru
ID  - MZM_2019_106_6_a10
ER  - 
%0 Journal Article
%A S. P. Suetin
%T Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System
%J Matematičeskie zametki
%D 2019
%P 904-916
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a10/
%G ru
%F MZM_2019_106_6_a10
S. P. Suetin. Equivalence of a Scalar and a Vector Equilibrium Problem for a Pair of Functions Forming a Nikishin System. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 904-916. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a10/

[1] S. P. Suetin, “O novom podkhode k zadache o raspredelenii nulei polinomov Ermita–Pade dlya sistemy Nikishina”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Tr. MIAN, 301, MAIK «Nauka/Interperiodika», M., 2018, 259–275 | DOI

[2] S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade dlya kompleksnoi sistemy Nikishina”, UMN, 73:2 (440) (2018), 183–184 | DOI | MR

[3] H. Stahl, “Three different approaches to a proof of convergence for Padé approximants”, Rational Approximation and Applications in Mathematics and Physics, Lecture Notes in Math., 1237, Springer-Verlag, Berlin, 1987, 79–124 | DOI | MR

[4] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results. A summary of results”, Nonlinear Numerical Methods and Rational Approximation, Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR

[5] E. M. Nikishin, “Ob asimptotike lineinykh form dlya sovmestnykh approksimatsii Pade”, Izv. vuzov. Matem., 1986, no. 2, 33–41 | MR | Zbl

[6] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[7] A. I. Aptekarev, A. I. Bogolyubskii, M. L. Yattselev, “Skhodimost luchevykh posledovatelnostei approksimatsii Frobeniusa–Pade”, Matem. sb., 208:3 (2017), 4–27 | DOI | MR

[8] D. Barrios Rolania, Dzh. S. Dzheronimo, G. Lopes Lagomasino, “Rekurrentnye sootnosheniya vysshikh poryadkov, approksimatsii Ermita–Pade i sistemy Nikishina”, Matem. sb., 209:3 (2018), 102–137 | DOI

[9] G. Lopes Lagomasino, V. Van Ashe, “Metod zadachi Rimana–Gilberta v primenenii k sisteme Nikishina”, Matem. sb., 209:7 (2018), 106–138 | DOI | MR | Zbl

[10] S. P. Suetin, “Ob odnom primere sistemy Nikishina”, Matem. zametki, 104:6 (2018), 918–929 | DOI

[11] E. A. Rakhmanov, S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. sb., 204:9 (2013), 115–160 | DOI

[12] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padè polynomials for semiclassical functions”, Modern Trends in Constructive Function Theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 | DOI | MR

[13] S. P. Suetin, Hermite–Padé Polynomials and Analytic Continuation: New Approach and Some Results, 2018, arXiv: 1806.08735

[14] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR

[15] A. A. Gonchar, E. A. Rakhmanov, “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 157, 1981, 31–48 | MR | Zbl

[16] A. I. Aptekarev, “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. AN, 422:4 (2008), 443–445 | MR

[17] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent Advances in Orthogonal Polynomials, Special Functions and Their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR

[18] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK «Nauka/Interperiodika», M., 2015, 272–279 | DOI

[19] E. M. Chirka, “Potentsialy na kompaktnoi rimanovoi poverkhnosti”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Sbornik statei, Tr. MIAN, 301, MAIK «Nauka/Interperiodika», M., 2018, 287–319 | DOI

[20] E. M. Chirka, “Ravnovesnye mery na kompaktnoi rimanovoi poverkhnosti”, Matematicheskaya fizika i prilozheniya, Sbornik statei, Tr. MIAN, 306, MAIK “Nauka/Interperiodika”, M., 2019 (to appear)

[21] H. R. Stahl, Sets of Minimal Capacity and Extremal Domains, 2012, arXiv: 1205.3811

[22] L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR