Generalized Localization Principle for Continuous Wavelet Decompositions
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 803-810.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spherically symmetric continuous wavelet decompositions are considered, and the notion of Riesz means is introduced for them. Generalized localization is proved for the decompositions under study in $L_p$ classes without any restrictions on the wavelets. Further, generalized localization is studied for the Riesz means of wavelet decompositions of distributions from the Sobolev class with negative order of smoothness.
Keywords: spherically symmetric wavelet decompositions, Riesz means, generalized localization.
@article{MZM_2019_106_6_a0,
     author = {R. R. Ashurov and Yu. \`E. Fayziev},
     title = {Generalized {Localization} {Principle} for {Continuous} {Wavelet} {Decompositions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--810},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - Yu. È. Fayziev
TI  - Generalized Localization Principle for Continuous Wavelet Decompositions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 803
EP  - 810
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/
LA  - ru
ID  - MZM_2019_106_6_a0
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A Yu. È. Fayziev
%T Generalized Localization Principle for Continuous Wavelet Decompositions
%J Matematičeskie zametki
%D 2019
%P 803-810
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/
%G ru
%F MZM_2019_106_6_a0
R. R. Ashurov; Yu. È. Fayziev. Generalized Localization Principle for Continuous Wavelet Decompositions. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/

[1] V. A. Ilin, “Ob obobschennoi interpritatsii printsipa lokalizatsii dlya ryadov Fure po fundamentalnym sistemam funktsii”, Sib. matem. zhurn., 9:5 (1968), 1093–1106 | MR

[2] A. Carbery, F. Soria, “Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces, and $L_2$ localization principle”, Rev. Mat. Iberoamericana, 4:2 (1988), 319–337 | DOI | MR

[3] A. Carbery, F. Soria, “Pointwise Fourier inversion and localisation in $\mathbb{R}^n$”, J. Fourier Anal. Appl., 3:Special Issue (1997) | MR

[4] A. Bastis, “Generalized localization of Fourier series with respect to the eigenfunctions of the Laplace operator in the classes $L_p$”, Litovsk. Mat. Sb., 31:3 (1991), 387–405 | MR

[5] R. Ashurov, A. Butaev, “On generalized localization of Fourier inversion for distributions”, Topics in Functional Analysis and Algebra, Contemp. Math., 672, Amer. Math. Soc., Providence, RI, 2016, 33–50 | DOI | MR

[6] R. Ashurov, A. Butaev, B. Pradhan, “On generalized localization of Fourier inversion associated with an elliptic operator for distributions”, Abstr. Appl. Anal., 2012, Art. ID 649848 | MR

[7] Sh. A. Alimov, “Obobschennaya lokalizatsiya dlya srednykh Rissa spektralnykh razlozhenii raspredelenii”, Dokl. AN, 86:2 (2012), 7–9 | MR

[8] R. Ashurov, A. Butaev, “On pointwise convergence of continuous wavelet transforms”, Uzbek Math. J., 2018, no. 1, 4–26 | MR

[9] I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA, SIAM, 1992 | MR

[10] M. Rao, H. Šikić, R. Song, “Application of Carleson's theorem to wavelet inversion”, Control Cybernet., 23:4 (1994), 761–771 | MR

[11] R. Ashurov, A. Butaev, “On continuous wavelet transforms of distributions”, Appl. Math. Lett., 24:9 (2011), 1578–1583 | DOI | MR

[12] R. Ashurov, A. Butaev, “On spherically symmetric continuous wavelet transforms of functions from Liouville classes”, Int. J. Math. Comput., 11:J11 (2011), 111–117 | MR