@article{MZM_2019_106_6_a0,
author = {R. R. Ashurov and Yu. \`E. Fayziev},
title = {Generalized {Localization} {Principle} for {Continuous} {Wavelet} {Decompositions}},
journal = {Matemati\v{c}eskie zametki},
pages = {803--810},
year = {2019},
volume = {106},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/}
}
R. R. Ashurov; Yu. È. Fayziev. Generalized Localization Principle for Continuous Wavelet Decompositions. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/
[1] V. A. Ilin, “Ob obobschennoi interpritatsii printsipa lokalizatsii dlya ryadov Fure po fundamentalnym sistemam funktsii”, Sib. matem. zhurn., 9:5 (1968), 1093–1106 | MR
[2] A. Carbery, F. Soria, “Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces, and $L_2$ localization principle”, Rev. Mat. Iberoamericana, 4:2 (1988), 319–337 | DOI | MR
[3] A. Carbery, F. Soria, “Pointwise Fourier inversion and localisation in $\mathbb{R}^n$”, J. Fourier Anal. Appl., 3:Special Issue (1997) | MR
[4] A. Bastis, “Generalized localization of Fourier series with respect to the eigenfunctions of the Laplace operator in the classes $L_p$”, Litovsk. Mat. Sb., 31:3 (1991), 387–405 | MR
[5] R. Ashurov, A. Butaev, “On generalized localization of Fourier inversion for distributions”, Topics in Functional Analysis and Algebra, Contemp. Math., 672, Amer. Math. Soc., Providence, RI, 2016, 33–50 | DOI | MR
[6] R. Ashurov, A. Butaev, B. Pradhan, “On generalized localization of Fourier inversion associated with an elliptic operator for distributions”, Abstr. Appl. Anal., 2012, Art. ID 649848 | MR
[7] Sh. A. Alimov, “Obobschennaya lokalizatsiya dlya srednykh Rissa spektralnykh razlozhenii raspredelenii”, Dokl. AN, 86:2 (2012), 7–9 | MR
[8] R. Ashurov, A. Butaev, “On pointwise convergence of continuous wavelet transforms”, Uzbek Math. J., 2018, no. 1, 4–26 | MR
[9] I. Daubechies, Ten Lectures on Wavelets, Philadelphia, PA, SIAM, 1992 | MR
[10] M. Rao, H. Šikić, R. Song, “Application of Carleson's theorem to wavelet inversion”, Control Cybernet., 23:4 (1994), 761–771 | MR
[11] R. Ashurov, A. Butaev, “On continuous wavelet transforms of distributions”, Appl. Math. Lett., 24:9 (2011), 1578–1583 | DOI | MR
[12] R. Ashurov, A. Butaev, “On spherically symmetric continuous wavelet transforms of functions from Liouville classes”, Int. J. Math. Comput., 11:J11 (2011), 111–117 | MR