Generalized Localization Principle for Continuous Wavelet Decompositions
Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 803-810

Voir la notice de l'article provenant de la source Math-Net.Ru

Spherically symmetric continuous wavelet decompositions are considered, and the notion of Riesz means is introduced for them. Generalized localization is proved for the decompositions under study in $L_p$ classes without any restrictions on the wavelets. Further, generalized localization is studied for the Riesz means of wavelet decompositions of distributions from the Sobolev class with negative order of smoothness.
Keywords: spherically symmetric wavelet decompositions, Riesz means, generalized localization.
@article{MZM_2019_106_6_a0,
     author = {R. R. Ashurov and Yu. \`E. Fayziev},
     title = {Generalized {Localization} {Principle} for {Continuous} {Wavelet} {Decompositions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--810},
     publisher = {mathdoc},
     volume = {106},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - Yu. È. Fayziev
TI  - Generalized Localization Principle for Continuous Wavelet Decompositions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 803
EP  - 810
VL  - 106
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/
LA  - ru
ID  - MZM_2019_106_6_a0
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A Yu. È. Fayziev
%T Generalized Localization Principle for Continuous Wavelet Decompositions
%J Matematičeskie zametki
%D 2019
%P 803-810
%V 106
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/
%G ru
%F MZM_2019_106_6_a0
R. R. Ashurov; Yu. È. Fayziev. Generalized Localization Principle for Continuous Wavelet Decompositions. Matematičeskie zametki, Tome 106 (2019) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_2019_106_6_a0/