Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 761-783.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the nonlinear viscoelastic Kirchhoff-type equation $$ u_{tt}-M(\|\nabla u\|^2_2)\Delta u +\int_0^t h(t-s)\Delta u(s)\,ds+a|u_t|^{m-2}u_t=|u|^{p-2}u $$ with initial conditions and acoustic boundary conditions. We show that, depending on the properties of convolution kernel $h$ at infinity, the energy of the solution decays exponentially or polynomially as $t\to +\infty$. Our approach is based on integral inequalities and multiplier techniques. Instead of using a Lyapunov-type technique for some perturbed energy, we concentrate on the original energy, showing that it satisfies a nonlinear integral inequality which, in turn, yields the final decay estimate.
Keywords: Kirchhoff-type equation, acoustic boundary condition, original energy, energy decay.
@article{MZM_2019_106_5_a9,
     author = {Fushan Li and Shuai Xi},
     title = {Dynamic {Properties} of a {Nonlinear} {Viscoelastic} {Kirchhoff-Type} {Equation} with {Acoustic} {Control} {Boundary} {Conditions.~I}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {761--783},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/}
}
TY  - JOUR
AU  - Fushan Li
AU  - Shuai Xi
TI  - Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I
JO  - Matematičeskie zametki
PY  - 2019
SP  - 761
EP  - 783
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/
LA  - ru
ID  - MZM_2019_106_5_a9
ER  - 
%0 Journal Article
%A Fushan Li
%A Shuai Xi
%T Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I
%J Matematičeskie zametki
%D 2019
%P 761-783
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/
%G ru
%F MZM_2019_106_5_a9
Fushan Li; Shuai Xi. Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 761-783. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/

[1] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, “Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping”, Electron. J. Differential Equations, 44 (2002) | MR | Zbl

[2] “Global existence and asymptotic stability for viscoelastic problems”, Differential Integral Equations, 15:6 (2002), 731–748 | MR | Zbl

[3] M. M. Cavalcanti, H. P. Oquendo, “Frictional versus viscoelastic damping in a semilinear wave equation”, SIAM J. Control Optim., 42:4 (2003), 1310–1324 | DOI | MR | Zbl

[4] S. Berrimi, S. A. Messaoudi, “Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping”, Electron. J. Differential Equations, 88 (2004) | MR | Zbl

[5] K. Nishihara, Y. Yamada, “On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms”, Funkcial. Ekvac., 33:1 (1990), 151–159 | MR | Zbl

[6] M. Aassila, A. Benaissa, “Existence globale et comportement asymptotique des solutions des équations de Kirchhoff moyennement dégénérées avec un terme non-linéaire dissipatif.”, Funkcial. Ekvac., 43 (2000), 309–333 | MR

[7] R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press, New York, 1971

[8] K. Ono, “Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings”, J. Differential Equations, 137:2 (1997), 273–301 | DOI | MR | Zbl

[9] Yaojun Ye, “On the exponential decay of solutions for some modelling equations of Kirchhoff-type with strong dissipation”, Appl. Math., 1:6 (2010), 529–533 | DOI

[10] S. T. Wu, L. Y. Tsai, “Blow-up of solutions for some non-linear wave equations of Kirchhoff-type with some dissipation”, Nonlinear Anal., 65:2 (2006), 243–264 | DOI | MR | Zbl

[11] Q. Gao, F. Li, Y. Wang, “Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation”, Cent. Eur. J. Math., 9:3 (2011), 686–698 | DOI | MR | Zbl

[12] K. Ono, K. Nishihara, “On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation”, Adv. Math. Sci. Appl., 5:2 (1995), 457–476 | MR | Zbl

[13] S. T. Wu, “Exponential energy decay of solutions for an integro-differential equation with strong damping”, J. Math. Anal. Appl., 364:2 (2010), 609–617 | DOI | MR | Zbl

[14] G. C. Gorain, “Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation”, Appl. Math. Comput., 177:1 (2006), 235–242 | DOI | MR

[15] J. T. Beale, S. I. Rosencrans, “Acoustic boundary conditions”, Bull. Amer. Math. Soc., 80 (1974), 1276–1278 | DOI | MR | Zbl

[16] J. T. Beale, “Spectral properties of an acoustic boundary condition”, Indiana Univ. Math. J., 25:9 (1976), 895–917 | DOI | MR | Zbl

[17] J. T. Beale, “Acoustic scattering from locally reacting surfaces”, Indiana Univ. Math. J., 26:2 (1977), 199–222 | DOI | MR | Zbl

[18] C. L. Frota, J. A. Goldstein, “Some nonlinear wave equations with acoustic boundary conditions”, J. Differential Equations, 164:1 (2000), 92–109 | DOI | MR | Zbl

[19] J. Y. Park, S. H. Park, “Decay rate estimates for wave equations of memory type with acoustic boundary conditions”, Nonlinear Anal., 74:3 (2011), 993–998 | DOI | MR | Zbl

[20] F. Li, “Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-von Kármán shallow shell equations”, Acta Math. Sin. (Engl. Ser.), 25:12 (2009), 2133–2156 | DOI | MR | Zbl

[21] F. Li, Y. Bai, “Uniform decay rates for nonlinear viscoelastic Marguerre-von Kármán equations”, J. Math. Anal. Appl., 351:2 (2009), 522–535 | DOI | MR | Zbl

[22] F. Li, “Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Kármán shallow shell system”, J. Differential Equations, 249:6 (2010), 1241–1257 | DOI | MR | Zbl

[23] F. Li, Z. Zhao, Y. Chen, “Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation”, Nonlinear Anal. Real World Appl., 12:3 (2011), 1759–1773 | MR | Zbl

[24] F. Li, C. Zhao, “Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping”, Nonlinear Anal., 74:11 (2011), 3468–3477 | DOI | MR | Zbl

[25] F. Li, Y. Bao, “Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition”, J. Dyn. Control Syst., 23:2 (2017), 301–315 | DOI | MR | Zbl

[26] X. Lin, F. Li, “Asymptotic energy estimates for nonlinear Petrovsky plate model subject to viscoelastic damping”, Abstr. Appl. Anal., 2012, Art. ID 419717 | MR

[27] F. Li, J. Li, “Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions”, J. Math. Anal. Appl., 385:2 (2012), 1005–1014 | DOI | MR | Zbl

[28] F. Li, J Li, “Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions”, Bound. Value Probl., 219 (2014) | DOI | MR

[29] F. Li, Q. Gao, “Blow-up of solution for a nonlinear Petrovsky type equation with memory”, Appl. Math. Comput., 274 (2016), 383–392 | MR | Zbl

[30] J. Y. Park, J. J. Bae, Pusan, “On the existence of solutions for some nondegenerate nonlinear wave equations of kirchhoff type”, Czechoslovak Math. J., 52 (127):4 (2002), 781–795 | DOI | MR | Zbl

[31] L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[32] R. A. Admas, Sobolev Spaces, Academac press, New York, 1975 | MR

[33] F. Alabau-Boussouira, P. Cannarsa, D. Sforza,, “Decay estimates for second order evolution equations with memory”, J. Funct. Anal., 254:5 (2008), 1342–1372 | DOI | MR | Zbl