Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_5_a9, author = {Fushan Li and Shuai Xi}, title = {Dynamic {Properties} of a {Nonlinear} {Viscoelastic} {Kirchhoff-Type} {Equation} with {Acoustic} {Control} {Boundary} {Conditions.~I}}, journal = {Matemati\v{c}eskie zametki}, pages = {761--783}, publisher = {mathdoc}, volume = {106}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/} }
TY - JOUR AU - Fushan Li AU - Shuai Xi TI - Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I JO - Matematičeskie zametki PY - 2019 SP - 761 EP - 783 VL - 106 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/ LA - ru ID - MZM_2019_106_5_a9 ER -
%0 Journal Article %A Fushan Li %A Shuai Xi %T Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I %J Matematičeskie zametki %D 2019 %P 761-783 %V 106 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/ %G ru %F MZM_2019_106_5_a9
Fushan Li; Shuai Xi. Dynamic Properties of a Nonlinear Viscoelastic Kirchhoff-Type Equation with Acoustic Control Boundary Conditions.~I. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 761-783. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a9/
[1] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano, “Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping”, Electron. J. Differential Equations, 44 (2002) | MR | Zbl
[2] “Global existence and asymptotic stability for viscoelastic problems”, Differential Integral Equations, 15:6 (2002), 731–748 | MR | Zbl
[3] M. M. Cavalcanti, H. P. Oquendo, “Frictional versus viscoelastic damping in a semilinear wave equation”, SIAM J. Control Optim., 42:4 (2003), 1310–1324 | DOI | MR | Zbl
[4] S. Berrimi, S. A. Messaoudi, “Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping”, Electron. J. Differential Equations, 88 (2004) | MR | Zbl
[5] K. Nishihara, Y. Yamada, “On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms”, Funkcial. Ekvac., 33:1 (1990), 151–159 | MR | Zbl
[6] M. Aassila, A. Benaissa, “Existence globale et comportement asymptotique des solutions des équations de Kirchhoff moyennement dégénérées avec un terme non-linéaire dissipatif.”, Funkcial. Ekvac., 43 (2000), 309–333 | MR
[7] R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press, New York, 1971
[8] K. Ono, “Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings”, J. Differential Equations, 137:2 (1997), 273–301 | DOI | MR | Zbl
[9] Yaojun Ye, “On the exponential decay of solutions for some modelling equations of Kirchhoff-type with strong dissipation”, Appl. Math., 1:6 (2010), 529–533 | DOI
[10] S. T. Wu, L. Y. Tsai, “Blow-up of solutions for some non-linear wave equations of Kirchhoff-type with some dissipation”, Nonlinear Anal., 65:2 (2006), 243–264 | DOI | MR | Zbl
[11] Q. Gao, F. Li, Y. Wang, “Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation”, Cent. Eur. J. Math., 9:3 (2011), 686–698 | DOI | MR | Zbl
[12] K. Ono, K. Nishihara, “On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation”, Adv. Math. Sci. Appl., 5:2 (1995), 457–476 | MR | Zbl
[13] S. T. Wu, “Exponential energy decay of solutions for an integro-differential equation with strong damping”, J. Math. Anal. Appl., 364:2 (2010), 609–617 | DOI | MR | Zbl
[14] G. C. Gorain, “Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation”, Appl. Math. Comput., 177:1 (2006), 235–242 | DOI | MR
[15] J. T. Beale, S. I. Rosencrans, “Acoustic boundary conditions”, Bull. Amer. Math. Soc., 80 (1974), 1276–1278 | DOI | MR | Zbl
[16] J. T. Beale, “Spectral properties of an acoustic boundary condition”, Indiana Univ. Math. J., 25:9 (1976), 895–917 | DOI | MR | Zbl
[17] J. T. Beale, “Acoustic scattering from locally reacting surfaces”, Indiana Univ. Math. J., 26:2 (1977), 199–222 | DOI | MR | Zbl
[18] C. L. Frota, J. A. Goldstein, “Some nonlinear wave equations with acoustic boundary conditions”, J. Differential Equations, 164:1 (2000), 92–109 | DOI | MR | Zbl
[19] J. Y. Park, S. H. Park, “Decay rate estimates for wave equations of memory type with acoustic boundary conditions”, Nonlinear Anal., 74:3 (2011), 993–998 | DOI | MR | Zbl
[20] F. Li, “Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-von Kármán shallow shell equations”, Acta Math. Sin. (Engl. Ser.), 25:12 (2009), 2133–2156 | DOI | MR | Zbl
[21] F. Li, Y. Bai, “Uniform decay rates for nonlinear viscoelastic Marguerre-von Kármán equations”, J. Math. Anal. Appl., 351:2 (2009), 522–535 | DOI | MR | Zbl
[22] F. Li, “Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Kármán shallow shell system”, J. Differential Equations, 249:6 (2010), 1241–1257 | DOI | MR | Zbl
[23] F. Li, Z. Zhao, Y. Chen, “Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation”, Nonlinear Anal. Real World Appl., 12:3 (2011), 1759–1773 | MR | Zbl
[24] F. Li, C. Zhao, “Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping”, Nonlinear Anal., 74:11 (2011), 3468–3477 | DOI | MR | Zbl
[25] F. Li, Y. Bao, “Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition”, J. Dyn. Control Syst., 23:2 (2017), 301–315 | DOI | MR | Zbl
[26] X. Lin, F. Li, “Asymptotic energy estimates for nonlinear Petrovsky plate model subject to viscoelastic damping”, Abstr. Appl. Anal., 2012, Art. ID 419717 | MR
[27] F. Li, J. Li, “Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions”, J. Math. Anal. Appl., 385:2 (2012), 1005–1014 | DOI | MR | Zbl
[28] F. Li, J Li, “Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions”, Bound. Value Probl., 219 (2014) | DOI | MR
[29] F. Li, Q. Gao, “Blow-up of solution for a nonlinear Petrovsky type equation with memory”, Appl. Math. Comput., 274 (2016), 383–392 | MR | Zbl
[30] J. Y. Park, J. J. Bae, Pusan, “On the existence of solutions for some nondegenerate nonlinear wave equations of kirchhoff type”, Czechoslovak Math. J., 52 (127):4 (2002), 781–795 | DOI | MR | Zbl
[31] L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[32] R. A. Admas, Sobolev Spaces, Academac press, New York, 1975 | MR
[33] F. Alabau-Boussouira, P. Cannarsa, D. Sforza,, “Decay estimates for second order evolution equations with memory”, J. Funct. Anal., 254:5 (2008), 1342–1372 | DOI | MR | Zbl