Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_5_a8, author = {S. A. Sergeev}, title = {Asymptotic {Solutions} of the {Cauchy} {Problem} with {Localized} {Initial} {Data} for a {Finite-Difference} {Scheme} {Corresponding} to the {One-Dimensional} {Wave} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {744--760}, publisher = {mathdoc}, volume = {106}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/} }
TY - JOUR AU - S. A. Sergeev TI - Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation JO - Matematičeskie zametki PY - 2019 SP - 744 EP - 760 VL - 106 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/ LA - ru ID - MZM_2019_106_5_a8 ER -
%0 Journal Article %A S. A. Sergeev %T Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation %J Matematičeskie zametki %D 2019 %P 744-760 %V 106 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/ %G ru %F MZM_2019_106_5_a8
S. A. Sergeev. Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 744-760. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/
[1] V. P. Maslov, “Nestandartnye kharakteristiki v asimptoticheskikh zadachakh”, UMN, 38:6 (234) (1983), 3–36 | MR | Zbl
[2] V. P. Maslov, “Kharakteristiki psevdodifferentsialnykh operatorov i raznostnykh skhem”, Mezhdunarodnyi kongress matematikov v Nitstse – 1970. Doklady sovetskikh matematikov, M., 1972, 188–202
[3] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl
[4] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya, effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. I”, Sovremennye problemy matematiki. Differentsialnye uravneniya, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 166, 1984, 130–160 | MR | Zbl
[5] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. II”, Sovremennye problemy matematiki. Matematicheskii analiz, algebra, topologiya, Tr. MIAN SSSR, 167, 1985, 96–107 | MR | Zbl
[6] V. G. Danilov, P. N. Zhevandrov, “O metode Maslova postroeniya kombinirovannykh asimptotik dlya $h$-psevdodifferentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 411–424 | MR | Zbl
[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR | Zbl
[9] S. Yu. Dobrokhotov, V. E. Nazakinskii, “Propagation of a linear wave created by a spatially localized pertrubation in a regular lattice and punctured Lagrangian manifold”, Russ. J. Math. Phys., 24:1 (2017), 127–133 | MR | Zbl
[10] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Prokolotye lagranzhevy mnogoobraziya i asimptoticheskie resheniya lineinykh uravnenii voln na vode s lokalizovannymi nachalnymi usloviyami”, Matem. zametki, 101:6 (2017), 936–943 | DOI | MR
[11] L. N. Trefethen, “Group velocity in finite difference schemes”, SIAM Rev., 24:2 (1982), 113–136 | DOI | MR | Zbl
[12] R. Vichnevetsky, J. B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM, Philadelphia, PA, 1982 | MR | Zbl
[13] R. C. Y. Chin, G. W. Hedstrom, “A dispersion analysis for difference schemes: tables of generalized Airy functions”, Math. Comp., 32:144 (1978), 1163–1170 | DOI | MR | Zbl
[14] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of Noncommutative Analysis. Theory and Applications, Walter de Gruyter, Berlin, 1996 | MR
[15] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[16] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl
[17] S. Yu. Dobrokhotov, P. N. Zhevandrov, V. P. Maslov, A. I. Shafarevich, “Asimptoticheskie bystroubyvayuschie resheniya lineinykh strogo giperbolicheskikh sistem s peremennymi koeffitsientami”, Matem. zametki, 49:4 (1991), 31–46 | MR | Zbl
[18] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Nestandartnye kharakteristiki i operatornyi metod Maslova v lineinykh zadachakh o neustanovivshikhsya volnakh na vode”, Funkts. analiz i ego pril., 19:4 (1985), 43–54 | MR | Zbl
[19] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized waves and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | MR | Zbl
[20] S. A. Sergeev, “Asimptoticheskie resheniya odnomernogo linearizovannogo uravneniya Kortevega–de Friza s lokalizovannymi nachalnymi dannymi”, Matem. zametki, 102:3 (2017), 445–461 | DOI | MR | Zbl