Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 744-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

We pose the Cauchy problem with localized initial data that arises when passing from an explicit difference scheme for the wave equation to a pseudodifferential equation. The solution of the Cauchy problem for the difference scheme is compared with the asymptotics of the solution of the Cauchy problem for the pseudodifferential equation. We give a detailed study of the behavior of the asymptotic solution in the vicinity of the leading edge, where yet another version of the asymptotic solution is constructed based on vertical manifolds.
Keywords: wave equation, asymptotic solution, finite-difference scheme, nonstandard characteristics, Lagrangian manifold, vertical manifold.
@article{MZM_2019_106_5_a8,
     author = {S. A. Sergeev},
     title = {Asymptotic {Solutions} of the {Cauchy} {Problem} with {Localized} {Initial} {Data} for a {Finite-Difference} {Scheme} {Corresponding} to the {One-Dimensional} {Wave} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {744--760},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/}
}
TY  - JOUR
AU  - S. A. Sergeev
TI  - Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation
JO  - Matematičeskie zametki
PY  - 2019
SP  - 744
EP  - 760
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/
LA  - ru
ID  - MZM_2019_106_5_a8
ER  - 
%0 Journal Article
%A S. A. Sergeev
%T Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation
%J Matematičeskie zametki
%D 2019
%P 744-760
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/
%G ru
%F MZM_2019_106_5_a8
S. A. Sergeev. Asymptotic Solutions of the Cauchy Problem with Localized Initial Data for a Finite-Difference Scheme Corresponding to the One-Dimensional Wave Equation. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 744-760. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a8/

[1] V. P. Maslov, “Nestandartnye kharakteristiki v asimptoticheskikh zadachakh”, UMN, 38:6 (234) (1983), 3–36 | MR | Zbl

[2] V. P. Maslov, “Kharakteristiki psevdodifferentsialnykh operatorov i raznostnykh skhem”, Mezhdunarodnyi kongress matematikov v Nitstse – 1970. Doklady sovetskikh matematikov, M., 1972, 188–202

[3] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[4] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya, effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. I”, Sovremennye problemy matematiki. Differentsialnye uravneniya, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 166, 1984, 130–160 | MR | Zbl

[5] V. P. Maslov, V. G. Danilov, “Printsip dvoistvennosti Pontryagina dlya vychisleniya effekta tipa Cherenkova v kristallakh i raznostnykh skhemakh. II”, Sovremennye problemy matematiki. Matematicheskii analiz, algebra, topologiya, Tr. MIAN SSSR, 167, 1985, 96–107 | MR | Zbl

[6] V. G. Danilov, P. N. Zhevandrov, “O metode Maslova postroeniya kombinirovannykh asimptotik dlya $h$-psevdodifferentsialnykh uravnenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 411–424 | MR | Zbl

[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR | Zbl

[9] S. Yu. Dobrokhotov, V. E. Nazakinskii, “Propagation of a linear wave created by a spatially localized pertrubation in a regular lattice and punctured Lagrangian manifold”, Russ. J. Math. Phys., 24:1 (2017), 127–133 | MR | Zbl

[10] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Prokolotye lagranzhevy mnogoobraziya i asimptoticheskie resheniya lineinykh uravnenii voln na vode s lokalizovannymi nachalnymi usloviyami”, Matem. zametki, 101:6 (2017), 936–943 | DOI | MR

[11] L. N. Trefethen, “Group velocity in finite difference schemes”, SIAM Rev., 24:2 (1982), 113–136 | DOI | MR | Zbl

[12] R. Vichnevetsky, J. B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations, SIAM, Philadelphia, PA, 1982 | MR | Zbl

[13] R. C. Y. Chin, G. W. Hedstrom, “A dispersion analysis for difference schemes: tables of generalized Airy functions”, Math. Comp., 32:144 (1978), 1163–1170 | DOI | MR | Zbl

[14] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of Noncommutative Analysis. Theory and Applications, Walter de Gruyter, Berlin, 1996 | MR

[15] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[16] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[17] S. Yu. Dobrokhotov, P. N. Zhevandrov, V. P. Maslov, A. I. Shafarevich, “Asimptoticheskie bystroubyvayuschie resheniya lineinykh strogo giperbolicheskikh sistem s peremennymi koeffitsientami”, Matem. zametki, 49:4 (1991), 31–46 | MR | Zbl

[18] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Nestandartnye kharakteristiki i operatornyi metod Maslova v lineinykh zadachakh o neustanovivshikhsya volnakh na vode”, Funkts. analiz i ego pril., 19:4 (1985), 43–54 | MR | Zbl

[19] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized waves and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | MR | Zbl

[20] S. A. Sergeev, “Asimptoticheskie resheniya odnomernogo linearizovannogo uravneniya Kortevega–de Friza s lokalizovannymi nachalnymi dannymi”, Matem. zametki, 102:3 (2017), 445–461 | DOI | MR | Zbl