Algebraic $K$-theory of triangular rings and its generalization
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 736-743.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a “tensor” generalization of the algebraic $K$-theory of upper triangular rings is constructed. It is proved that the corresponding $K_m$-groups are naturally isomorphic to the direct sum of $K_m$-groups of the diagonal part.
Keywords: Quillen's $K$-theory, upper triangular ring.
@article{MZM_2019_106_5_a7,
     author = {F. Yu. Popelenskii},
     title = {Algebraic $K$-theory of triangular rings and its generalization},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--743},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/}
}
TY  - JOUR
AU  - F. Yu. Popelenskii
TI  - Algebraic $K$-theory of triangular rings and its generalization
JO  - Matematičeskie zametki
PY  - 2019
SP  - 736
EP  - 743
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/
LA  - ru
ID  - MZM_2019_106_5_a7
ER  - 
%0 Journal Article
%A F. Yu. Popelenskii
%T Algebraic $K$-theory of triangular rings and its generalization
%J Matematičeskie zametki
%D 2019
%P 736-743
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/
%G ru
%F MZM_2019_106_5_a7
F. Yu. Popelenskii. Algebraic $K$-theory of triangular rings and its generalization. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 736-743. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/

[1] R. K. Dennis, S. C. Geller, “$K_i$ of upper triangular matrix rings”, Proc. Amer. Math. Soc., 56 (1976), 73–78 | MR | Zbl

[2] A. J. Berrick, M. E. Keating, “The $K$-theory of triangular matrix rings”, Applications of Algebraic $K$-theory to Algebraic Geometry and Number Theory, Part I, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 69–74 | DOI | MR

[3] M. E. Keating, “The $K$-theory of triangular matrix rings. II”, Proc. Amer. Math. Soc., 100:2 (1987), 235–236 | MR | Zbl

[4] W. Bruns, J. Gubeladze, “Polytopes and $K$-theory”, Georgian Math. J., 11:4 (2004), 655–670 | MR | Zbl

[5] F. Yu. Popelenskii, M. V. Prikhodko, “$K$-gruppy Brunsa–Gubeladze dlya chetyrekhugolnoi piramidy”, Topologiya, SMFN, 51, RUDN, M., 2013, 142–151

[6] H. Bass, Algebraic $K$-Theory, W. A. Benjamin, New York, 1968 | MR | Zbl