@article{MZM_2019_106_5_a7,
author = {F. Yu. Popelenskii},
title = {Algebraic $K$-theory of triangular rings and its generalization},
journal = {Matemati\v{c}eskie zametki},
pages = {736--743},
year = {2019},
volume = {106},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/}
}
F. Yu. Popelenskii. Algebraic $K$-theory of triangular rings and its generalization. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 736-743. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/
[1] R. K. Dennis, S. C. Geller, “$K_i$ of upper triangular matrix rings”, Proc. Amer. Math. Soc., 56 (1976), 73–78 | MR | Zbl
[2] A. J. Berrick, M. E. Keating, “The $K$-theory of triangular matrix rings”, Applications of Algebraic $K$-theory to Algebraic Geometry and Number Theory, Part I, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 69–74 | DOI | MR
[3] M. E. Keating, “The $K$-theory of triangular matrix rings. II”, Proc. Amer. Math. Soc., 100:2 (1987), 235–236 | MR | Zbl
[4] W. Bruns, J. Gubeladze, “Polytopes and $K$-theory”, Georgian Math. J., 11:4 (2004), 655–670 | MR | Zbl
[5] F. Yu. Popelenskii, M. V. Prikhodko, “$K$-gruppy Brunsa–Gubeladze dlya chetyrekhugolnoi piramidy”, Topologiya, SMFN, 51, RUDN, M., 2013, 142–151
[6] H. Bass, Algebraic $K$-Theory, W. A. Benjamin, New York, 1968 | MR | Zbl