Algebraic $K$-theory of triangular rings and its generalization
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 736-743
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, a “tensor” generalization of the algebraic
$K$-theory of upper triangular rings is constructed.
It is proved that the
corresponding
$K_m$-groups are naturally isomorphic to the direct sum of
$K_m$-groups
of the diagonal part.
Keywords:
Quillen's
$K$-theory, upper triangular ring.
@article{MZM_2019_106_5_a7,
author = {F. Yu. Popelenskii},
title = {Algebraic $K$-theory of triangular rings and its generalization},
journal = {Matemati\v{c}eskie zametki},
pages = {736--743},
publisher = {mathdoc},
volume = {106},
number = {5},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/}
}
F. Yu. Popelenskii. Algebraic $K$-theory of triangular rings and its generalization. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 736-743. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a7/