On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 723-735

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem in a semibounded interval for a fourth-order equation with “double degeneracy”: the small parameter in the equation multiplies the product of the unknown function vanishing on the boundary and its highest derivative. Such a problem arises in the description of the motion of weak solutions of polymers near a critical point. For the zero value of the parameter, the solution is the classical Hiemenz solution. We prove the unique solvability of the problem for nonnegative values of the parameter not exceeding $1$.
Keywords: flow of an aqueous solution of polymers, boundary-value problem, unique solvability.
Mots-clés : Hiemenz solution
@article{MZM_2019_106_5_a6,
     author = {A. G. Petrova},
     title = {On the {Unique} {Solvability} of the {Problem} of the {Flow} of an {Aqueous} {Solution} of {Polymers} near a {Critical} {Point}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--735},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a6/}
}
TY  - JOUR
AU  - A. G. Petrova
TI  - On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point
JO  - Matematičeskie zametki
PY  - 2019
SP  - 723
EP  - 735
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a6/
LA  - ru
ID  - MZM_2019_106_5_a6
ER  - 
%0 Journal Article
%A A. G. Petrova
%T On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point
%J Matematičeskie zametki
%D 2019
%P 723-735
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a6/
%G ru
%F MZM_2019_106_5_a6
A. G. Petrova. On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 723-735. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a6/