Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 687-707

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the most general mixed fractional derivatives and integrals from three points of views: probability, the theory of operator semigroups, and the theory of generalized functions. The solutions to the resulting mixed fractional PDEs turned out to be representable in terms of of completely monotone functions in a certain class generalizing the usual Mittag-Leffler functions.
Keywords: fractional derivative, operator-valued Mittag-Leffler function, potential operators, Lévy subordinators.
Mots-clés : Dynkin's martingale
@article{MZM_2019_106_5_a4,
     author = {V. N. Kolokoltsov},
     title = {Mixed {Fractional} {Differential} {Equations} and {Generalized} {Operator-Valued} {Mittag-Leffler} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--707},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
TI  - Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 687
EP  - 707
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/
LA  - ru
ID  - MZM_2019_106_5_a4
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%T Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
%J Matematičeskie zametki
%D 2019
%P 687-707
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/
%G ru
%F MZM_2019_106_5_a4
V. N. Kolokoltsov. Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 687-707. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/