Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_5_a4, author = {V. N. Kolokoltsov}, title = {Mixed {Fractional} {Differential} {Equations} and {Generalized} {Operator-Valued} {Mittag-Leffler} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {687--707}, publisher = {mathdoc}, volume = {106}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/} }
TY - JOUR AU - V. N. Kolokoltsov TI - Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions JO - Matematičeskie zametki PY - 2019 SP - 687 EP - 707 VL - 106 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/ LA - ru ID - MZM_2019_106_5_a4 ER -
V. N. Kolokoltsov. Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 687-707. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/
[1] O. P. Agrawal, “Generalized variational problems and Euler–Lagrange equations”, Comput. Math. Appl., 59:5 (2010), 1852–1864 | DOI | MR | Zbl
[2] M. M. Džrbašjan,, A. B. Nersesian, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 3:1 (1968), 3–29 | MR
[3] A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations, Springer, Cham, 2015 | MR | Zbl
[4] Y. Xu, Zh. He, O. P. Agrawal, “Numerical and analytical solutions of new generalized fractional diffusion equation”, Comput. Math. Appl., 66:10 (2013), 2019–2029 | DOI | MR | Zbl
[5] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser., 301, Longman Sci. Tech., Harlow | MR | Zbl
[6] A. N. Kochubei, Y. Kondratiev, “Fractional kinetic hierarchies and intermittency”, Kinet. Relat. Models, 10:3 (2017), 725–740 | DOI | MR | Zbl
[7] V. N. Kolokoltsov, “On fully mixed and multidimensional extensions of the Caputo and Riemann-Liouville derivatives, related Markov processes and fractional differential equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073 | DOI | MR | Zbl
[8] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math., 182, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[9] V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, De Gruyter Stud. Math., 38, Berlin, 2011 | MR | Zbl
[10] M. M. Meerschaert, A. Sikorskii, “Stochastic Models for Fractional Calculus”, De Gruyter Stud. Math., 43, Berlin, 2012 | MR | Zbl
[11] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 2, Nauka, M., 1973 | MR | Zbl
[12] V. Kolokoltsov, Chronological Operator-Valued Feynman–Kac Formulae for Generalized Fractional Evolutions, 2017, arXiv: 1705.08157
[13] R. Garra, A. Giusti, F. Mainardi, G. Pagnini, “Fractional relaxation with time-varying coefficient”, Fract. Calc. Appl. Anal., 17:2 (2014), 424–439 | DOI | MR | Zbl
[14] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, World Sci. Publ., Hackensack, NJ, 2017 | MR | Zbl
[15] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl
[16] V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010 | MR | Zbl
[17] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Heidelberg, 2012 | MR
[18] B. J. West, Fractional Calculus View of Complexity. Tomorrow's Science, CRC Press, Boca Raton, FL, 2016 | MR | Zbl
[19] V. N. Kolokoltsov, “Obobschennye sluchainye bluzhdaniya v nepreryvnom vremeni (CTRW), subordinatsiya vremenami dostizheniya i drobnaya dinamika”, Teoriya veroyatn. i ee primen., 53:4 (2008), 684–703 | DOI | MR | Zbl
[20] T. Atanackovic, D. Dolicanin, S. Pilipovic, B. Stankovic, “Cauchy problems for some classes of linear fractional differential equations”, Fract. Calc. Appl. Anal., 17:4 (2014), 1039–1059 | DOI | MR | Zbl
[21] P. Górka, H. Prado, J. Trujillo, “The time fractional Schrödinger equation on Hilbert space”, Integral Equations Operator Theory, 87:1 (2017), 1–14 | DOI | MR | Zbl
[22] R. Gorenflo, Y. Luchko, M. Stojanović, “Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density”, Fract. Calc. Appl. Anal., 16:2 (2013), 297–316 | DOI | MR | Zbl
[23] N. N. Leonenko, M. M. Meerschaert, A. Sikorskii, “Correlation structure of fractional Pearson diffusions”, Comput. Math. Appl., 66:5 (2013), 737–745 | DOI | MR | Zbl
[24] E. Orsingher, B. Toaldo, “Space-time fractional equations and the related stable processes at random time”, J. Theoret. Probab., 30 (2017), 1–26 | DOI | MR | Zbl
[25] M. E. Hernandez-Hernandez, V. N. Kolokoltsov, “On the solution of two-sided fractional ordinary differential equations of Caputo type”, Fract. Calc. Appl. Anal., 19:6 (2016), 1393–1413 | DOI | MR | Zbl
[26] V. N. Kolokoltsov, M. A. Veretennikova, “Fractional Hamilton Jacobi Bellman equations for scaled limits of controlled Continuous Time Random Walks”, Commun. Appl. Ind. Math., 6:1 (2014), e-484 | DOI | MR | Zbl