Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 687-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the most general mixed fractional derivatives and integrals from three points of views: probability, the theory of operator semigroups, and the theory of generalized functions. The solutions to the resulting mixed fractional PDEs turned out to be representable in terms of of completely monotone functions in a certain class generalizing the usual Mittag-Leffler functions.
Keywords: fractional derivative, operator-valued Mittag-Leffler function, potential operators, Lévy subordinators.
Mots-clés : Dynkin's martingale
@article{MZM_2019_106_5_a4,
     author = {V. N. Kolokoltsov},
     title = {Mixed {Fractional} {Differential} {Equations} and {Generalized} {Operator-Valued} {Mittag-Leffler} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--707},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/}
}
TY  - JOUR
AU  - V. N. Kolokoltsov
TI  - Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 687
EP  - 707
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/
LA  - ru
ID  - MZM_2019_106_5_a4
ER  - 
%0 Journal Article
%A V. N. Kolokoltsov
%T Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
%J Matematičeskie zametki
%D 2019
%P 687-707
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/
%G ru
%F MZM_2019_106_5_a4
V. N. Kolokoltsov. Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 687-707. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a4/

[1] O. P. Agrawal, “Generalized variational problems and Euler–Lagrange equations”, Comput. Math. Appl., 59:5 (2010), 1852–1864 | DOI | MR | Zbl

[2] M. M. Džrbašjan,, A. B. Nersesian, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 3:1 (1968), 3–29 | MR

[3] A. B. Malinowska, T. Odzijewicz, D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations, Springer, Cham, 2015 | MR | Zbl

[4] Y. Xu, Zh. He, O. P. Agrawal, “Numerical and analytical solutions of new generalized fractional diffusion equation”, Comput. Math. Appl., 66:10 (2013), 2019–2029 | DOI | MR | Zbl

[5] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser., 301, Longman Sci. Tech., Harlow | MR | Zbl

[6] A. N. Kochubei, Y. Kondratiev, “Fractional kinetic hierarchies and intermittency”, Kinet. Relat. Models, 10:3 (2017), 725–740 | DOI | MR | Zbl

[7] V. N. Kolokoltsov, “On fully mixed and multidimensional extensions of the Caputo and Riemann-Liouville derivatives, related Markov processes and fractional differential equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073 | DOI | MR | Zbl

[8] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math., 182, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[9] V. N. Kolokoltsov, Markov Processes, Semigroups and Generators, De Gruyter Stud. Math., 38, Berlin, 2011 | MR | Zbl

[10] M. M. Meerschaert, A. Sikorskii, “Stochastic Models for Fractional Calculus”, De Gruyter Stud. Math., 43, Berlin, 2012 | MR | Zbl

[11] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 2, Nauka, M., 1973 | MR | Zbl

[12] V. Kolokoltsov, Chronological Operator-Valued Feynman–Kac Formulae for Generalized Fractional Evolutions, 2017, arXiv: 1705.08157

[13] R. Garra, A. Giusti, F. Mainardi, G. Pagnini, “Fractional relaxation with time-varying coefficient”, Fract. Calc. Appl. Anal., 17:2 (2014), 424–439 | DOI | MR | Zbl

[14] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, World Sci. Publ., Hackensack, NJ, 2017 | MR | Zbl

[15] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[16] V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, 2010 | MR | Zbl

[17] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Heidelberg, 2012 | MR

[18] B. J. West, Fractional Calculus View of Complexity. Tomorrow's Science, CRC Press, Boca Raton, FL, 2016 | MR | Zbl

[19] V. N. Kolokoltsov, “Obobschennye sluchainye bluzhdaniya v nepreryvnom vremeni (CTRW), subordinatsiya vremenami dostizheniya i drobnaya dinamika”, Teoriya veroyatn. i ee primen., 53:4 (2008), 684–703 | DOI | MR | Zbl

[20] T. Atanackovic, D. Dolicanin, S. Pilipovic, B. Stankovic, “Cauchy problems for some classes of linear fractional differential equations”, Fract. Calc. Appl. Anal., 17:4 (2014), 1039–1059 | DOI | MR | Zbl

[21] P. Górka, H. Prado, J. Trujillo, “The time fractional Schrödinger equation on Hilbert space”, Integral Equations Operator Theory, 87:1 (2017), 1–14 | DOI | MR | Zbl

[22] R. Gorenflo, Y. Luchko, M. Stojanović, “Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density”, Fract. Calc. Appl. Anal., 16:2 (2013), 297–316 | DOI | MR | Zbl

[23] N. N. Leonenko, M. M. Meerschaert, A. Sikorskii, “Correlation structure of fractional Pearson diffusions”, Comput. Math. Appl., 66:5 (2013), 737–745 | DOI | MR | Zbl

[24] E. Orsingher, B. Toaldo, “Space-time fractional equations and the related stable processes at random time”, J. Theoret. Probab., 30 (2017), 1–26 | DOI | MR | Zbl

[25] M. E. Hernandez-Hernandez, V. N. Kolokoltsov, “On the solution of two-sided fractional ordinary differential equations of Caputo type”, Fract. Calc. Appl. Anal., 19:6 (2016), 1393–1413 | DOI | MR | Zbl

[26] V. N. Kolokoltsov, M. A. Veretennikova, “Fractional Hamilton Jacobi Bellman equations for scaled limits of controlled Continuous Time Random Walks”, Commun. Appl. Ind. Math., 6:1 (2014), e-484 | DOI | MR | Zbl