Almost-Linear Segments of Graphs of Functions
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 679-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\colon \mathbb{R} \to \mathbb{R}$ be a function whose graph $\{(x, f(x))\}_{x \in \mathbb{R}}$ in $\mathbb{R}^2$ is a rectifiable curve. It is proved that, for all $L \infty$ and $\varepsilon > 0$, there exist points $A = (a, f(a))$ and $B = (b, f(b))$ such that the distance between $A$ and $B$ is greater than $L$ and the distances from all points $(x, f(x))$, $a \le x \le b$, to the segment $AB$ do not exceed $\varepsilon |AB|$. An example of a plane rectifiable curve for which this statement is false is given. It is shown that, given a coordinate-wise nondecreasing sequence of integer points of the plane with bounded distances between adjacent points, for any $r \infty$, there exists a straight line containing at least $r$ points of this sequence.
Mots-clés : rectifiable curve
Keywords: graph of a function, discrete geometry.
@article{MZM_2019_106_5_a3,
     author = {A. M. Zubkov and O. P. Orlov},
     title = {Almost-Linear {Segments} of {Graphs} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {679--686},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a3/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - O. P. Orlov
TI  - Almost-Linear Segments of Graphs of Functions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 679
EP  - 686
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a3/
LA  - ru
ID  - MZM_2019_106_5_a3
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A O. P. Orlov
%T Almost-Linear Segments of Graphs of Functions
%J Matematičeskie zametki
%D 2019
%P 679-686
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a3/
%G ru
%F MZM_2019_106_5_a3
A. M. Zubkov; O. P. Orlov. Almost-Linear Segments of Graphs of Functions. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 679-686. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a3/

[2] H. Sagan, Space-Filling Curves, Springer-Verlag, New York, 1994 | MR | Zbl

[3] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983 | MR