A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 660-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

The distance determined by the Minkowski gauge function to the complement of a convex solid body in a finite-dimensional space is considered. The concavity of this distance function on a given convex set is proved, and a formula for its superdifferential at any interior point of this set is obtained. It is also proved that the distance function under consideration is directionally differentiable at the boundary points of the convex set, and formulas for its directional derivative are obtained.
Keywords: distance function, gauge function of a set, superdifferential, cone of possible directions, support function.
@article{MZM_2019_106_5_a1,
     author = {S. I. Dudov and M. A. Osiptsev},
     title = {A {Formula} for the {Superdifferential} of the {Distance} {Determined} by the {Gauge} {Function} to the {Complement} of a {Convex} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {660--668},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - M. A. Osiptsev
TI  - A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set
JO  - Matematičeskie zametki
PY  - 2019
SP  - 660
EP  - 668
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/
LA  - ru
ID  - MZM_2019_106_5_a1
ER  - 
%0 Journal Article
%A S. I. Dudov
%A M. A. Osiptsev
%T A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set
%J Matematičeskie zametki
%D 2019
%P 660-668
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/
%G ru
%F MZM_2019_106_5_a1
S. I. Dudov; M. A. Osiptsev. A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 660-668. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/

[1] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR | Zbl

[2] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[3] Ch. B. Dunham, “Asymmetric norms and linear approximation”, Congr. Numer., 69 (1989), 113–120 | MR | Zbl

[4] S. Romaguera, M. Schellekens, “Quasi-metric properties of complexity spaces”, Topology Appl., 98 (1999), 311–322 | DOI | MR | Zbl

[5] F. S. De Blasi, J. Myjak, “On generalized best approximation problem”, J. Approx. Theory, 94:1 (1998), 54–72 | DOI | MR | Zbl

[6] C. Alerge, “Continuous operators on asymmetric normed spaces”, Acta Math. Hungar., 122:4 (2009), 357–372 | DOI | MR

[7] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[8] A. R. Alimov, Approksimativno-geometricheskie svoistva mnozhestv v normirovannykh i nesimmetrichno normirovannykh prostranstvakh, Dis. $\dots$ dokt. fiz.-matem. nauk, Moskovskii gos. un-t imeni M. V. Lomonosova, M., 2014

[9] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4 (2) (2014), 489–497 | Zbl

[10] G. E. Ivanov, M. S. Lopushanski, “Approksimativnye svoistva slabo vypuklykh mnozhestv v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104

[11] G. E. Ivanov, M. S. Lopushanski, “Separation theorems for nonconvex sets in spaces with nonsymmetric seminorm”, Math. Inequal. Appl., 20:3 (2017), 737–754 | DOI | MR | Zbl

[12] J. M. Borwein, S. P. Fitzpatrick, “Existense of nearest points in Banach spaces”, Canad. J. Math., 41:4 (1989), 702–720 | DOI | MR | Zbl

[13] S. I. Dudov, “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | DOI | MR | Zbl

[14] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR | Zbl

[15] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[16] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007 | Zbl

[17] S. I. Dudov, “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. sb., 186:3 (1995), 29–52 | MR | Zbl

[18] F. P. Vasilev, Metody optimizatsii, Ch. I, MTsNMO, M., 2011

[19] S. I. Dudov, “Vnutrennyaya otsenka vypuklogo mnozhestva telom normy”, Zh. vychisl. matem. i matem. fiz., 36:5 (1996), 153–159 | MR | Zbl