Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_5_a1, author = {S. I. Dudov and M. A. Osiptsev}, title = {A {Formula} for the {Superdifferential} of the {Distance} {Determined} by the {Gauge} {Function} to the {Complement} of a {Convex} {Set}}, journal = {Matemati\v{c}eskie zametki}, pages = {660--668}, publisher = {mathdoc}, volume = {106}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/} }
TY - JOUR AU - S. I. Dudov AU - M. A. Osiptsev TI - A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set JO - Matematičeskie zametki PY - 2019 SP - 660 EP - 668 VL - 106 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/ LA - ru ID - MZM_2019_106_5_a1 ER -
%0 Journal Article %A S. I. Dudov %A M. A. Osiptsev %T A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set %J Matematičeskie zametki %D 2019 %P 660-668 %V 106 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/ %G ru %F MZM_2019_106_5_a1
S. I. Dudov; M. A. Osiptsev. A Formula for the Superdifferential of the Distance Determined by the Gauge Function to the Complement of a Convex Set. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 660-668. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a1/
[1] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR | Zbl
[2] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl
[3] Ch. B. Dunham, “Asymmetric norms and linear approximation”, Congr. Numer., 69 (1989), 113–120 | MR | Zbl
[4] S. Romaguera, M. Schellekens, “Quasi-metric properties of complexity spaces”, Topology Appl., 98 (1999), 311–322 | DOI | MR | Zbl
[5] F. S. De Blasi, J. Myjak, “On generalized best approximation problem”, J. Approx. Theory, 94:1 (1998), 54–72 | DOI | MR | Zbl
[6] C. Alerge, “Continuous operators on asymmetric normed spaces”, Acta Math. Hungar., 122:4 (2009), 357–372 | DOI | MR
[7] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Basel, 2013 | MR | Zbl
[8] A. R. Alimov, Approksimativno-geometricheskie svoistva mnozhestv v normirovannykh i nesimmetrichno normirovannykh prostranstvakh, Dis. $\dots$ dokt. fiz.-matem. nauk, Moskovskii gos. un-t imeni M. V. Lomonosova, M., 2014
[9] A. R. Alimov, “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4 (2) (2014), 489–497 | Zbl
[10] G. E. Ivanov, M. S. Lopushanski, “Approksimativnye svoistva slabo vypuklykh mnozhestv v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104
[11] G. E. Ivanov, M. S. Lopushanski, “Separation theorems for nonconvex sets in spaces with nonsymmetric seminorm”, Math. Inequal. Appl., 20:3 (2017), 737–754 | DOI | MR | Zbl
[12] J. M. Borwein, S. P. Fitzpatrick, “Existense of nearest points in Banach spaces”, Canad. J. Math., 41:4 (1989), 702–720 | DOI | MR | Zbl
[13] S. I. Dudov, “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | DOI | MR | Zbl
[14] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR | Zbl
[15] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[16] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007 | Zbl
[17] S. I. Dudov, “Differentsiruemost po napravleniyam funktsii rasstoyaniya”, Matem. sb., 186:3 (1995), 29–52 | MR | Zbl
[18] F. P. Vasilev, Metody optimizatsii, Ch. I, MTsNMO, M., 2011
[19] S. I. Dudov, “Vnutrennyaya otsenka vypuklogo mnozhestva telom normy”, Zh. vychisl. matem. i matem. fiz., 36:5 (1996), 153–159 | MR | Zbl