Regular Ordinary Differential Operators with Involution
Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 643-659

Voir la notice de l'article provenant de la source Math-Net.Ru

The main results of the paper are related to the study of differential operators of the form $$ Ly = y^{(n)}(-x) + \sum_{k=1}^n p_k(x) y^{(n-k)}(-x) + \sum_{k=1}^n q_k(x) y^{(n-k)}(x),\qquad \ x\in [-1,1], $$ with boundary conditions of general form concentrated at the endpoints of a closed interval. Two equivalent definitions of the regularity of boundary conditions for the operator $L$ are given, and a theorem on the unconditional basis property with brackets of the generalized eigenfunctions of the operator $L$ in the case of regular boundary conditions is proved.
Keywords: operators with involution, regular differential operators, basis property of eigenfunctions of operators, Riesz bases.
@article{MZM_2019_106_5_a0,
     author = {V. E. Vladykina and A. A. Shkalikov},
     title = {Regular {Ordinary} {Differential} {Operators} with {Involution}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--659},
     publisher = {mathdoc},
     volume = {106},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a0/}
}
TY  - JOUR
AU  - V. E. Vladykina
AU  - A. A. Shkalikov
TI  - Regular Ordinary Differential Operators with Involution
JO  - Matematičeskie zametki
PY  - 2019
SP  - 643
EP  - 659
VL  - 106
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a0/
LA  - ru
ID  - MZM_2019_106_5_a0
ER  - 
%0 Journal Article
%A V. E. Vladykina
%A A. A. Shkalikov
%T Regular Ordinary Differential Operators with Involution
%J Matematičeskie zametki
%D 2019
%P 643-659
%V 106
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a0/
%G ru
%F MZM_2019_106_5_a0
V. E. Vladykina; A. A. Shkalikov. Regular Ordinary Differential Operators with Involution. Matematičeskie zametki, Tome 106 (2019) no. 5, pp. 643-659. http://geodesic.mathdoc.fr/item/MZM_2019_106_5_a0/