The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent $p(x)>1$ that guarantee the uniform boundedness of the sequence $S_n^{\alpha,\alpha}(f)$, $n=0,1,\dots$, of Fourier sums with respect to the ultraspherical Jacobi polynomials $P_k^{\alpha,\alpha}(x)$ in the weighted Lebesgue space $L_\mu^{p(x)}([-1,1])$ with weight $\mu=\mu(x)=(1-x^2)^\alpha$, where $\alpha>-1/2$. The case $\alpha=-1/2$ is studied separately. It is shown that, for the uniform boundedness of the sequence $S_n^{-1/2,-1/2}(f)$, $n=0,1,\dots$, of Fourier–Chebyshev sums in the space $L_\mu^{p(x)}([-1,1])$ with $\mu(x)=(1-x^2)^{-1/2}$, it suffices and, in a certain sense, necessary that the variable exponent $p$ satisfy the Dini–Lipschitz condition of the form
$$
|p(x)-p(y)|\le \frac{d}{-\ln|x-y|}\mspace{2mu}, \qquad\text{where}\quad |x-y|\le \frac{1}{2},\quad x,y\in[-1,1],\quad d>0,
$$
and the condition $p(x)>1$ for all $x\in[-1,1]$.
Keywords:
the basis property of ultraspherical polynomials, Fourier–Chebyshev sums, convergence in a weighted Lebesgue space with variable exponent, Dini–Lipschitz condition.
Mots-clés : Fourier–Jacobi sums
Mots-clés : Fourier–Jacobi sums
@article{MZM_2019_106_4_a9,
author = {I. I. Sharapudinov},
title = {The {Basis} {Property} of {Ultraspherical} {Jacobi} {Polynomials} in a {Weighted} {Lebesgue} {Space} with {Variable} {Exponent}},
journal = {Matemati\v{c}eskie zametki},
pages = {595--621},
publisher = {mathdoc},
volume = {106},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/}
}
TY - JOUR AU - I. I. Sharapudinov TI - The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent JO - Matematičeskie zametki PY - 2019 SP - 595 EP - 621 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/ LA - ru ID - MZM_2019_106_4_a9 ER -
%0 Journal Article %A I. I. Sharapudinov %T The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent %J Matematičeskie zametki %D 2019 %P 595-621 %V 106 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/ %G ru %F MZM_2019_106_4_a9
I. I. Sharapudinov. The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/