The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent $p(x)>1$ that guarantee the uniform boundedness of the sequence $S_n^{\alpha,\alpha}(f)$, $n=0,1,\dots$, of Fourier sums with respect to the ultraspherical Jacobi polynomials $P_k^{\alpha,\alpha}(x)$ in the weighted Lebesgue space $L_\mu^{p(x)}([-1,1])$ with weight $\mu=\mu(x)=(1-x^2)^\alpha$, where $\alpha>-1/2$. The case $\alpha=-1/2$ is studied separately. It is shown that, for the uniform boundedness of the sequence $S_n^{-1/2,-1/2}(f)$, $n=0,1,\dots$, of Fourier–Chebyshev sums in the space $L_\mu^{p(x)}([-1,1])$ with $\mu(x)=(1-x^2)^{-1/2}$, it suffices and, in a certain sense, necessary that the variable exponent $p$ satisfy the Dini–Lipschitz condition of the form $$ |p(x)-p(y)|\le \frac{d}{-\ln|x-y|}\mspace{2mu}, \qquad\text{where}\quad |x-y|\le \frac{1}{2},\quad x,y\in[-1,1],\quad d>0, $$ and the condition $p(x)>1$ for all $x\in[-1,1]$.
Keywords: the basis property of ultraspherical polynomials, Fourier–Chebyshev sums, convergence in a weighted Lebesgue space with variable exponent, Dini–Lipschitz condition.
Mots-clés : Fourier–Jacobi sums
@article{MZM_2019_106_4_a9,
     author = {I. I. Sharapudinov},
     title = {The {Basis} {Property} of {Ultraspherical} {Jacobi} {Polynomials} in a {Weighted} {Lebesgue} {Space} with {Variable} {Exponent}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {595--621},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
JO  - Matematičeskie zametki
PY  - 2019
SP  - 595
EP  - 621
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/
LA  - ru
ID  - MZM_2019_106_4_a9
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
%J Matematičeskie zametki
%D 2019
%P 595-621
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/
%G ru
%F MZM_2019_106_4_a9
I. I. Sharapudinov. The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/