Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_4_a9, author = {I. I. Sharapudinov}, title = {The {Basis} {Property} of {Ultraspherical} {Jacobi} {Polynomials} in a {Weighted} {Lebesgue} {Space} with {Variable} {Exponent}}, journal = {Matemati\v{c}eskie zametki}, pages = {595--621}, publisher = {mathdoc}, volume = {106}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/} }
TY - JOUR AU - I. I. Sharapudinov TI - The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent JO - Matematičeskie zametki PY - 2019 SP - 595 EP - 621 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/ LA - ru ID - MZM_2019_106_4_a9 ER -
%0 Journal Article %A I. I. Sharapudinov %T The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent %J Matematičeskie zametki %D 2019 %P 595-621 %V 106 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/ %G ru %F MZM_2019_106_4_a9
I. I. Sharapudinov. The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/
[1] J. Newman, W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3 (1952), 219–222 | DOI | MR | Zbl
[2] B. Muckenhoupt, “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23 (1969), 306–310 | DOI | MR | Zbl
[3] H. Pollard, “The mean convergence of orthogonal series”, Trans. Amer. Math. Soc., 62 (1947), 387–403 | DOI | MR | Zbl
[4] H. Pollard, “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63 (1948), 355–367 | DOI | MR | Zbl
[5] H. Pollard, “The mean convergence of orthogonal series. III”, Duke Math. J., 16 (1949), 189–191 | DOI | MR | Zbl
[6] I. I. Sharapudinov, “O bazisnosti sistemy polinomov Lezhandra v prostranstve Lebega $L^{p(x)}(-1,1)$ s peremennym pokazatelem $p(x)$”, Matem. sb., 200:1 (2009), 137–160 | DOI | MR | Zbl
[7] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl
[8] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matematicheskaya monografiya, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012
[9] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR
[10] I. I. Sharapudinov, “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izv. RAN. Ser. matem., 77:2 (2013), 197–224 | DOI | MR | Zbl
[11] I. I. Sharapudinov, “O bazisnosti sistemy Khaara v prostranstve $\mathscr L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130 (172):2 (6) (1986), 275–283 | MR | Zbl
[12] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ $(p=p(x))$ nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl
[13] L. Diening, P. Harjulehto, P. Hastö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[14] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Springer, Heidelberg, 2013 | MR | Zbl
[15] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl
[16] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl