The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent $p(x)>1$ that guarantee the uniform boundedness of the sequence $S_n^{\alpha,\alpha}(f)$, $n=0,1,\dots$, of Fourier sums with respect to the ultraspherical Jacobi polynomials $P_k^{\alpha,\alpha}(x)$ in the weighted Lebesgue space $L_\mu^{p(x)}([-1,1])$ with weight $\mu=\mu(x)=(1-x^2)^\alpha$, where $\alpha>-1/2$. The case $\alpha=-1/2$ is studied separately. It is shown that, for the uniform boundedness of the sequence $S_n^{-1/2,-1/2}(f)$, $n=0,1,\dots$, of Fourier–Chebyshev sums in the space $L_\mu^{p(x)}([-1,1])$ with $\mu(x)=(1-x^2)^{-1/2}$, it suffices and, in a certain sense, necessary that the variable exponent $p$ satisfy the Dini–Lipschitz condition of the form $$ |p(x)-p(y)|\le \frac{d}{-\ln|x-y|}\mspace{2mu}, \qquad\text{where}\quad |x-y|\le \frac{1}{2},\quad x,y\in[-1,1],\quad d>0, $$ and the condition $p(x)>1$ for all $x\in[-1,1]$.
Keywords: the basis property of ultraspherical polynomials, Fourier–Chebyshev sums, convergence in a weighted Lebesgue space with variable exponent, Dini–Lipschitz condition.
Mots-clés : Fourier–Jacobi sums
@article{MZM_2019_106_4_a9,
     author = {I. I. Sharapudinov},
     title = {The {Basis} {Property} of {Ultraspherical} {Jacobi} {Polynomials} in a {Weighted} {Lebesgue} {Space} with {Variable} {Exponent}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {595--621},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
JO  - Matematičeskie zametki
PY  - 2019
SP  - 595
EP  - 621
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/
LA  - ru
ID  - MZM_2019_106_4_a9
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent
%J Matematičeskie zametki
%D 2019
%P 595-621
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/
%G ru
%F MZM_2019_106_4_a9
I. I. Sharapudinov. The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a9/

[1] J. Newman, W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3 (1952), 219–222 | DOI | MR | Zbl

[2] B. Muckenhoupt, “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23 (1969), 306–310 | DOI | MR | Zbl

[3] H. Pollard, “The mean convergence of orthogonal series”, Trans. Amer. Math. Soc., 62 (1947), 387–403 | DOI | MR | Zbl

[4] H. Pollard, “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63 (1948), 355–367 | DOI | MR | Zbl

[5] H. Pollard, “The mean convergence of orthogonal series. III”, Duke Math. J., 16 (1949), 189–191 | DOI | MR | Zbl

[6] I. I. Sharapudinov, “O bazisnosti sistemy polinomov Lezhandra v prostranstve Lebega $L^{p(x)}(-1,1)$ s peremennym pokazatelem $p(x)$”, Matem. sb., 200:1 (2009), 137–160 | DOI | MR | Zbl

[7] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[8] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matematicheskaya monografiya, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012

[9] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR

[10] I. I. Sharapudinov, “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izv. RAN. Ser. matem., 77:2 (2013), 197–224 | DOI | MR | Zbl

[11] I. I. Sharapudinov, “O bazisnosti sistemy Khaara v prostranstve $\mathscr L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130 (172):2 (6) (1986), 275–283 | MR | Zbl

[12] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ $(p=p(x))$ nekotorykh semeistv operatorov svertki”, Matem. zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl

[13] L. Diening, P. Harjulehto, P. Hastö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[14] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Springer, Heidelberg, 2013 | MR | Zbl

[15] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[16] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl