Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_4_a7, author = {D. A. Podoprikhin and T. N. Fomenko}, title = {Multivalued {Homotopy} on an {Ordered} {Set,} {Fixed} and {Coincidence} {Points} of {Mappings,} and {Applications} in {Game} {Theory}}, journal = {Matemati\v{c}eskie zametki}, pages = {565--577}, publisher = {mathdoc}, volume = {106}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/} }
TY - JOUR AU - D. A. Podoprikhin AU - T. N. Fomenko TI - Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory JO - Matematičeskie zametki PY - 2019 SP - 565 EP - 577 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/ LA - ru ID - MZM_2019_106_4_a7 ER -
%0 Journal Article %A D. A. Podoprikhin %A T. N. Fomenko %T Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory %J Matematičeskie zametki %D 2019 %P 565-577 %V 106 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/ %G ru %F MZM_2019_106_4_a7
D. A. Podoprikhin; T. N. Fomenko. Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 565-577. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/
[1] J. W. Walker, “Isotone relations and the fixed point property for posets”, Discrete Math., 48:2-3 (1984), 275–288 | MR | Zbl
[2] D. A. Podoprikhin, T. N. Fomenko, “Sokhranenie svoistva nepodvizhnoi tochki i svoistva sovpadeniya pri gomotopii otobrazhenii uporyadochennykh mnozhestv”, Dokl. AN, 477:4 (2017), 402–405 | DOI | Zbl
[3] R. E. Stong, “Finite topological spaces”, Trans. Amer. Math. Soc., 123:2 (1966), 325–340 | DOI | MR | Zbl
[4] M. Frigon, “On continuation methods for contractive and nonexpansive mappings”, Recent Advances on Metric Fixed Point Theory, Ciencias, 48, Univ. Sevilla, Sevilla, 1996, 19–30 | MR
[5] T. N. Fomenko, D. A. Podoprikhin, “Common fixed points and coincidences of mapping families on partially ordered set”, Topology Appl., 221 (2017), 275–285 | DOI | MR | Zbl
[6] D. A. Podoprikhin, T. N. Fomenko, “O sovpadeniyakh semeistv otobrazhenii uporyadochennykh mnozhestv”, Dokl. AN, 471:1 (2016), 16–18 | DOI | Zbl
[7] D. A. Podoprikhin, “Fixed points of mappings on ordered sets”, Lobachevskii J. Math., 38:6 (2017), 1069–1074 | DOI | MR | Zbl
[8] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, M., 2011 | MR | Zbl
[9] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (211) (1980), 59–126 | MR | Zbl
[10] B. B. Obukhovskii, Ob optimumakh i ravnovesiyakh v teorii igr i ekonomike, , 2000 http://www.pereplet.ru/obrazovanie/stsoros/1047.html | Zbl
[11] A. A. Vasin, V. V. Morozov, Teoriya igr i modeli matematicheskoi ekonomiki, Izd-vo Mosk. un-ta, M., 2005
[12] N. N. Vorobev, Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR | Zbl
[13] V. V. Mazalov, Matematicheskaya teoriya igr i prilozheniya, Lan, M., 2010 | MR | Zbl
[14] L. A. Petrosyan, N. A. Zenkevich, E. V. Shevkoplyas, Teoriya igr, BKhV-Peterburg, SPb., 2012