Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 565-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article develops results of the authors' previous papers on the topic. The notion of the homotopy of a multivalued mapping of an ordered set is introduced. We study the problem as to whether the existence of a fixed point (or a coincidence point) is preserved under multivalued homotopies of a multivalued mapping (or a pair of multivalued mappings). An application of some of the authors' previous results on fixed points in game theory is considered.
Keywords: ordered set, multivalued homotopy, fixed point, coincidence point, pair of equilibrium strategies.
@article{MZM_2019_106_4_a7,
     author = {D. A. Podoprikhin and T. N. Fomenko},
     title = {Multivalued {Homotopy} on an {Ordered} {Set,} {Fixed} and {Coincidence} {Points} of {Mappings,} and {Applications} in {Game} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {565--577},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/}
}
TY  - JOUR
AU  - D. A. Podoprikhin
AU  - T. N. Fomenko
TI  - Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory
JO  - Matematičeskie zametki
PY  - 2019
SP  - 565
EP  - 577
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/
LA  - ru
ID  - MZM_2019_106_4_a7
ER  - 
%0 Journal Article
%A D. A. Podoprikhin
%A T. N. Fomenko
%T Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory
%J Matematičeskie zametki
%D 2019
%P 565-577
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/
%G ru
%F MZM_2019_106_4_a7
D. A. Podoprikhin; T. N. Fomenko. Multivalued Homotopy on an Ordered Set, Fixed and Coincidence Points of Mappings, and Applications in Game Theory. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 565-577. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a7/

[1] J. W. Walker, “Isotone relations and the fixed point property for posets”, Discrete Math., 48:2-3 (1984), 275–288 | MR | Zbl

[2] D. A. Podoprikhin, T. N. Fomenko, “Sokhranenie svoistva nepodvizhnoi tochki i svoistva sovpadeniya pri gomotopii otobrazhenii uporyadochennykh mnozhestv”, Dokl. AN, 477:4 (2017), 402–405 | DOI | Zbl

[3] R. E. Stong, “Finite topological spaces”, Trans. Amer. Math. Soc., 123:2 (1966), 325–340 | DOI | MR | Zbl

[4] M. Frigon, “On continuation methods for contractive and nonexpansive mappings”, Recent Advances on Metric Fixed Point Theory, Ciencias, 48, Univ. Sevilla, Sevilla, 1996, 19–30 | MR

[5] T. N. Fomenko, D. A. Podoprikhin, “Common fixed points and coincidences of mapping families on partially ordered set”, Topology Appl., 221 (2017), 275–285 | DOI | MR | Zbl

[6] D. A. Podoprikhin, T. N. Fomenko, “O sovpadeniyakh semeistv otobrazhenii uporyadochennykh mnozhestv”, Dokl. AN, 471:1 (2016), 16–18 | DOI | Zbl

[7] D. A. Podoprikhin, “Fixed points of mappings on ordered sets”, Lobachevskii J. Math., 38:6 (2017), 1069–1074 | DOI | MR | Zbl

[8] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, M., 2011 | MR | Zbl

[9] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (211) (1980), 59–126 | MR | Zbl

[10] B. B. Obukhovskii, Ob optimumakh i ravnovesiyakh v teorii igr i ekonomike, , 2000 http://www.pereplet.ru/obrazovanie/stsoros/1047.html | Zbl

[11] A. A. Vasin, V. V. Morozov, Teoriya igr i modeli matematicheskoi ekonomiki, Izd-vo Mosk. un-ta, M., 2005

[12] N. N. Vorobev, Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR | Zbl

[13] V. V. Mazalov, Matematicheskaya teoriya igr i prilozheniya, Lan, M., 2010 | MR | Zbl

[14] L. A. Petrosyan, N. A. Zenkevich, E. V. Shevkoplyas, Teoriya igr, BKhV-Peterburg, SPb., 2012