The Riordan--Dirichlet Group
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 506-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

Riordan matrices are infinite lower triangular matrices corresponing to certain operators in the space of formal power series. In the paper, we introduce analogous matrices for the space of Dirichlet formal series. It is shown that these matrices form a group, which is analogous to the Riordan group. An analog of the Lagrange inversion formula is given. As an example of the application of these matrices, a method for obtaining identities analogous to those obtained by using Riordan matrices is considered.
Mots-clés : Riordan matrices
Keywords: formal Dirichlet series, Lagrange series.
@article{MZM_2019_106_4_a2,
     author = {E. V. Burlachenko},
     title = {The {Riordan--Dirichlet} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {506--518},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a2/}
}
TY  - JOUR
AU  - E. V. Burlachenko
TI  - The Riordan--Dirichlet Group
JO  - Matematičeskie zametki
PY  - 2019
SP  - 506
EP  - 518
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a2/
LA  - ru
ID  - MZM_2019_106_4_a2
ER  - 
%0 Journal Article
%A E. V. Burlachenko
%T The Riordan--Dirichlet Group
%J Matematičeskie zametki
%D 2019
%P 506-518
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a2/
%G ru
%F MZM_2019_106_4_a2
E. V. Burlachenko. The Riordan--Dirichlet Group. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 506-518. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a2/

[1] L. W. Shapiro, S. Getu, W. J. Woan, L. C. Woodson, “The Riordan group”, Discrete Appl. Math., 34:1-3 (1991), 229–339 | MR

[2] R. Sprugnoli, “Riordan arrays and combinatorial sums”, Discrete Math., 132 (1994), 267–290 | DOI | MR | Zbl

[3] R. Sprugnoli, “Riordan arrays and Abel–Gould identity”, Discrete Math., 142 (1995), 213–233 | DOI | MR | Zbl

[4] D. Merlini, D. G. Rogers, R. Sprugnoli, M. C. Verri, “On some alternative characterizations of Riordan arrays”, Canad. J. Math., 49:2 (1997), 301–320 | DOI | MR | Zbl

[5] W. Wang, T. Wang, “Generalized Riordan arrays”, Discrete Math., 308 (2008), 6466–6500 | MR | Zbl

[6] P. Barry, A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms, University College Cork, 2009

[7] D. E. Knuth, “Convolution polynomials”, Mathematica J., 2:4 (1992), 67–78

[8] A. Sowa, “Factorizing matrices by Dirichlet multiplication”, Linear Algebra Appl., 438:5 (2013), 2385–2393 | DOI | MR | Zbl

[9] A. Sova, “Koltso Dirikhle i bezuslovnye bazisy v $L_2[0,2\pi]$”, Funkts. analiz i ego pril., 47:3 (2013), 75–81 | DOI | MR | Zbl

[10] A. Sowa, “On the Dirichlet matrix operators in sequence spaces”, Appl. Math. (Warsaw), 44:2 (2017), 185–196 | DOI | MR | Zbl

[11] S. K. Lando, Lektsii o proizvodyaschikh funktsiyakh, MTsNMO, M., 2007

[12] S. K. Lando, Vvedenie v diskretnuyu matematiku, MTsNMO, M., 2012

[13] Dzh. Riordan, Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl