Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 622-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

Singular blow-up regimes are studied for a wide class of second-order quasilinear parabolic equations. Energy methods are used to obtain exact (in a certain sense) estimates of the final profile of the generalized solution near the blow-up time depending on the rate of increase of the global energy of this solution.
Keywords: quasilinear parabolic equations, energy solutions, blow-up regimes.
@article{MZM_2019_106_4_a10,
     author = {A. E. Shishkov and Y. A. Yevgenieva},
     title = {Localized {Blow-Up} {Regimes} for {Quasilinear} {Doubly} {Degenerate} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {622--635},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a10/}
}
TY  - JOUR
AU  - A. E. Shishkov
AU  - Y. A. Yevgenieva
TI  - Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2019
SP  - 622
EP  - 635
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a10/
LA  - ru
ID  - MZM_2019_106_4_a10
ER  - 
%0 Journal Article
%A A. E. Shishkov
%A Y. A. Yevgenieva
%T Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations
%J Matematičeskie zametki
%D 2019
%P 622-635
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a10/
%G ru
%F MZM_2019_106_4_a10
A. E. Shishkov; Y. A. Yevgenieva. Localized Blow-Up Regimes for Quasilinear Doubly Degenerate Parabolic Equations. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 622-635. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a10/

[1] A. A. Kovalevsky, I. I. Skrypnik, A. E. Shishkov, Singular Solutions in Nonlinear Elliptic and Parabolic Equations, De Gruyter Ser. Nonlinear Anal. Appl., 24, Berlin, Basel, 2016 | MR

[2] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:3 (1983), 311–341 | DOI | MR | Zbl

[3] A. V. Ivanov, P. 3. Mkrtychan, “O suschestvovanii nepreryvnykh po Gelderu obobschennykh reshenii pervoi kraevoi zadachi dlya kvazilineinykh parabolicheskikh uravnenii, dopuskayuschikh dvoinoe vyrozhdenie”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 21, Zap. nauchn. sem. LOMI, 182, Izd-vo «Nauka», Leningrad. otd., L., 1990, 5–28 | MR | Zbl

[4] A. V. Ivanov, P. 3. Mkrtychan, V. Yaeger, “Suschestvovanie i edinstvennost regulyarnogo resheniya pervoi nachalno-kraevoi zadachi dlya nekotorogo klassa dvazhdy nelineinykh parabolicheskikh uravnenii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 25, Zap. nauchn. sem. POMI, 213, Nauka, SPb., 1994, 48–65 | MR | Zbl

[5] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[6] B. H. Gilding, M. A. Herrero, “Localization and blow-up of termal waves in nonlinear heat conduction with peaking”, Math. Ann., 282:2 (1988), 223–242 | DOI | MR | Zbl

[7] C. Cortázar, M. Elgueta, “Localization and boundedness of the solutions of the Neumann problem for a filtration equation”, Nonlinear Anal., 13:1 (1989), 33–41 | DOI | MR | Zbl

[8] B. H. Gilding, I. Goncerzewicz, “Localization of solutions of exterior domain problems for the porous media equation with radial symmetry”, SIAM J. Math. Ann., 31:4 (2000), 862–893 | DOI | MR | Zbl

[9] T. O. Venegas, “The porous media equation with blowing up boundary data”, Adv. Nonlinear Stud., 9:1 (2009), 1–27 | DOI | MR | Zbl

[10] A. E. Shishkov, A. G. Schelkov, “Granichnye rezhimy s obostreniem dlya obschikh kvazilineinykh parabolicheskikh uravnenii v mnogomernykh oblastyakh”, Matem. sb., 190:3 (1999), 129–160 | DOI | MR | Zbl

[11] V. A. Galaktionov, A. E. Shishkov, “Saint-Venant's principle in blow-up for higher order quasilinear parabolic equations”, Proc. Roy. Soc. Edinburgh. Sect. A, 133:5 (2003), 1075–1119 | DOI | MR | Zbl

[12] V. A. Galaktionov, A. E. Shishkov, “Structure of boundary blow-up for higher-order quasilinear parabolic equations”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460:2051 (2004), 3299–3325 | DOI | MR | Zbl

[13] A. V. Ivanov, “Otsenki maksimumov modulei obobschennykh reshenii dlya dvazhdy nelineinykh parabolicheskikh uravnenii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 26, Zap. nauchn. sem. POMI, 221, POMI, SPb., 1995, 83–113 | MR | Zbl

[14] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993 | MR | Zbl

[15] K. O. Buryachenko, I. I. Skrypnik, “Riesz potentials and pointwise estimates of solutions to anisotropic porous medium equation”, Nonlinear Anal., 178 (2019), 50–85 | MR

[16] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, 16, Les Presses de l'Université de Montréal, Montréal, 1966 | MR | Zbl