On a Trace Formula for Functions of Noncommuting Operators
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 483-490
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of the paper is that the Lifshits–Krein trace formula cannot be generalized to the case of functions of noncommuting self-adjoint operators. To prove this, we show that, for pairs $(A_1,B_1)$ and $(A_2,B_2)$ of bounded self-adjoint operators with trace class differences $A_2-A_1$ and $B_2-B_1$, it is impossible to estimate the modulus of the trace of the difference $f(A_2,B_2)-f(A_1,B_1)$ in terms of the norm of $f$ in the Lipschitz class.
Keywords:
trace, trace class operators, operators Lipschitz functions, Lifshits–Krein trace formula.
@article{MZM_2019_106_4_a0,
author = {A. B. Aleksandrov and V. V. Peller and D. S. Potapov},
title = {On a {Trace} {Formula} for {Functions} of {Noncommuting} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--490},
publisher = {mathdoc},
volume = {106},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/}
}
TY - JOUR AU - A. B. Aleksandrov AU - V. V. Peller AU - D. S. Potapov TI - On a Trace Formula for Functions of Noncommuting Operators JO - Matematičeskie zametki PY - 2019 SP - 483 EP - 490 VL - 106 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/ LA - ru ID - MZM_2019_106_4_a0 ER -
A. B. Aleksandrov; V. V. Peller; D. S. Potapov. On a Trace Formula for Functions of Noncommuting Operators. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/