On a Trace Formula for Functions of Noncommuting Operators
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 483-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is that the Lifshits–Krein trace formula cannot be generalized to the case of functions of noncommuting self-adjoint operators. To prove this, we show that, for pairs $(A_1,B_1)$ and $(A_2,B_2)$ of bounded self-adjoint operators with trace class differences $A_2-A_1$ and $B_2-B_1$, it is impossible to estimate the modulus of the trace of the difference $f(A_2,B_2)-f(A_1,B_1)$ in terms of the norm of $f$ in the Lipschitz class.
Keywords: trace, trace class operators, operators Lipschitz functions, Lifshits–Krein trace formula.
@article{MZM_2019_106_4_a0,
     author = {A. B. Aleksandrov and V. V. Peller and D. S. Potapov},
     title = {On a {Trace} {Formula} for {Functions} of {Noncommuting} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--490},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
AU  - D. S. Potapov
TI  - On a Trace Formula for Functions of Noncommuting Operators
JO  - Matematičeskie zametki
PY  - 2019
SP  - 483
EP  - 490
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/
LA  - ru
ID  - MZM_2019_106_4_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%A D. S. Potapov
%T On a Trace Formula for Functions of Noncommuting Operators
%J Matematičeskie zametki
%D 2019
%P 483-490
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/
%G ru
%F MZM_2019_106_4_a0
A. B. Aleksandrov; V. V. Peller; D. S. Potapov. On a Trace Formula for Functions of Noncommuting Operators. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/

[1] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii, svyazannoi s kvantovoi statistikoi”, UMN, 7:1 (47) (1952), 171–180 | MR | Zbl

[2] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33 (75):3 (1953), 597–626 | MR | Zbl

[3] M. G. Krein, “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, Dokl. AN SSSR, 144:2 (1962), 268–271 | MR | Zbl

[4] M. G. Krein, “O nekotorykh novykh issledovaniyakh po teorii vozmuschenii samosopryazhennykh operatorov”, Pervaya letnyaya matematicheskaya shkola, I, Naukova Dumka, Kiev, 1964, 103–187 | MR

[5] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[6] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, Sankt-Peterburg, 2010 | MR

[7] Yu. B. Farforovskaya, “Primer lipshitsevoi funktsii ot samosopryazhennykh operatorov”, Issledovaniya po lineinym operatoram i teorii funktsii. III, Zap. nauchn. sem. LOMI, 30, Izd-vo «Nauka», Leningrad. otd., L., 1972, 146–153 | MR | Zbl

[8] V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144:12 (2016), 5207–5215 | DOI | MR | Zbl

[9] A. B. Aleksandrov, V. V. Peller, “Operatorno lipshitsevy funktsii”, UMN, 71:4 (430) (2016), 3–106 | DOI | MR | Zbl

[10] V. V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 19:2 (1985), 37–51 | MR | Zbl

[11] V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., 122, Marcel Dekker, New York, 1990, 529–544 | MR

[12] M. M. Malamud, Kh. Naidkhardt, V. V. Peller, “Formula sleda dlya funktsii szhatii”, Funkts. analiz i ego pril., 51:3 (2017), 33–55 | DOI | Zbl

[13] Yu. B. Farforovskaya, “O svyazi metriki Kantorovicha–Rubinshteina dlya spektralnykh razlozhenii samosopryazhennykh operatorov s funktsiyami ot operatorov”, Vestn. LGU, 19 (1968), 94–97

[14] A. McIntosh, “Counterexample to a question on commutators”, Proc. Amer. Math. Soc., 29 (1971), 337–340 | DOI | MR | Zbl

[15] T. Kato, “Continuity of the map $S\mapsto |S|$ for linear operators”, Proc. Japan Acad., 49 (1973), 157–160 | DOI | MR | Zbl

[16] M. Sh. Birman, M. Z. Solomyak, “Zamechaniya o funktsii spektralnogo sdviga”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauchn. sem. LOMI, 27, Izd-vo «Nauka», Leningrad. otd., L., 1972, 33–46 | MR | Zbl

[17] M. M. Malamud, H. Neidhardt, V. V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276:5 (2019), 1575–1621 | DOI | MR | Zbl

[18] B. Sekefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[19] D. Potapov, F. Sukochev, D. Zanin, “Krein's trace theorem revisited”, J. Spectr. Theory, 4:2 (2014), 415–430 | DOI | MR | Zbl

[20] A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1–52 | DOI | MR | Zbl

[21] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58:1 (1975), 105–122 | DOI | MR | Zbl

[22] E. Kissin, V. S. Shulman, “On a problem of J. P. Williams”, Proc. Amer. Math. Soc., 130:12 (2002), 3605–3608 | DOI | MR | Zbl

[23] A. B. Aleksandrov, V. V. Peller, D. S. Potapov, F. A. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226:6 (2011), 5216–5251 | DOI | MR | Zbl

[24] F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl