On a Trace Formula for Functions of Noncommuting Operators
Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 483-490

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is that the Lifshits–Krein trace formula cannot be generalized to the case of functions of noncommuting self-adjoint operators. To prove this, we show that, for pairs $(A_1,B_1)$ and $(A_2,B_2)$ of bounded self-adjoint operators with trace class differences $A_2-A_1$ and $B_2-B_1$, it is impossible to estimate the modulus of the trace of the difference $f(A_2,B_2)-f(A_1,B_1)$ in terms of the norm of $f$ in the Lipschitz class.
Keywords: trace, trace class operators, operators Lipschitz functions, Lifshits–Krein trace formula.
@article{MZM_2019_106_4_a0,
     author = {A. B. Aleksandrov and V. V. Peller and D. S. Potapov},
     title = {On a {Trace} {Formula} for {Functions} of {Noncommuting} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--490},
     publisher = {mathdoc},
     volume = {106},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
AU  - D. S. Potapov
TI  - On a Trace Formula for Functions of Noncommuting Operators
JO  - Matematičeskie zametki
PY  - 2019
SP  - 483
EP  - 490
VL  - 106
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/
LA  - ru
ID  - MZM_2019_106_4_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%A D. S. Potapov
%T On a Trace Formula for Functions of Noncommuting Operators
%J Matematičeskie zametki
%D 2019
%P 483-490
%V 106
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/
%G ru
%F MZM_2019_106_4_a0
A. B. Aleksandrov; V. V. Peller; D. S. Potapov. On a Trace Formula for Functions of Noncommuting Operators. Matematičeskie zametki, Tome 106 (2019) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2019_106_4_a0/