Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a9, author = {K. V. Runovskii}, title = {Generalized {Smoothness} and {Approximation} of {Periodic} {Functions} in the {Spaces~}$L_p$, $1<p<+\infty$}, journal = {Matemati\v{c}eskie zametki}, pages = {436--449}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a9/} }
K. V. Runovskii. Generalized Smoothness and Approximation of Periodic Functions in the Spaces~$L_p$, $1
[1] A. I. Stepanets, Klassifikatsiya i priblizhenie periodicheskikh funktsii, Naukova dumka, Kiev, 1987 | MR | Zbl
[2] H. Triebel, Higher Analysis, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992 | MR
[3] K. Runovski, H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers”, J. Funct. Spaces Appl., 2012, Art. ID 643135 | MR
[4] H.-J. Schmeisser, W. Sickel, “Characterization of periodic function spaces via means of Abel–Poisson and Bessel-potential type”, J. Approx. Theory, 61:2 (1990), 239–262 | DOI | MR
[5] K. V. Runovskii, “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Matem. zametki, 95:6 (2014), 899–910 | DOI | MR
[6] K. V. Runovskii, “Priblizhenie srednimi Fure i obobschennye moduli gladkosti”, Matem. zametki, 99:4 (2016), 574–587 | DOI | MR
[7] K. V. Runovskii, “Priblizhenie trigonometricheskimi polinomami, $K$-funktsionaly i obobschennye moduli gladkosti”, Matem. sb., 208:2 (2017), 70–87 | DOI | MR
[8] K. Runovski, H.-J. Schmeisser, “General moduli of smoothness and approximation by families of linear polynomial operators”, New Perspectives on Approximation and Sampling Theory, Birkhäuser, Cham, 2014, 269–298 | MR
[9] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Eucliadean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR
[10] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation. Vol. 1. One-Dimensional Theory, Academic Press, New York, 1971 | MR
[11] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl
[12] S. B. Stechkin, “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60 (1948), 1511–1514 | MR
[13] V. I. Ivanov, “Pryamye i obratnye teoremy teorii priblizheniya v metrike $L_p$ dlya $0
1$”, Matem. zametki, 18:5 (1975), 641–658 | MR | Zbl[14] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0
1$”, Matem. sb., 98 (140):3 (11) (1975), 395–415 | MR | Zbl[15] V. V. Arestov, “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl
[16] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR
[17] E. Belinski, E. Liflyand, “Approximation properties in $L_p$, $0
1$”, Funct. Approx. Comment. Math., 22 (1994), 189–199 | MR[18] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials”, Funct. Approx. Comment. Math., 29 (2001), 125–142 | DOI | MR
[19] B. V. Simonov, S. Yu. Tikhonov, “Teoremy vlozheniya v konstruktivnoi teorii priblizhenii”, Matem. sb., 199:9 (2008), 107–148 | DOI | MR | Zbl
[20] P. L. Butzer, H. Dyckhoff, E. Görlich, R. L. Stens, “Best trigonometric approximation, fractional order derivatives and Lipschitz classes”, Canadian J. Math., 29:4 (1977), 781–793 | DOI | MR
[21] M. K. Potapov, B. V. Simonov, “Moduli gladkosti polozhitelnykh poryadkov funktsii iz prostranstv $L_p$, $1\le p\le +\infty$”, Sovremennye problemy matematiki i mekhaniki, Tr. mekh.-matem. fak-ta MGU, 7, no. 1, Izd-vo mekh.-mat. fak-ta MGU, M., 2011, 100–109
[22] K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz-derivatives”, Z. Anal. Anwend., 34:1 (2015), 109–125 | MR