Generalized Smoothness and Approximation of Periodic Functions in the Spaces~$L_p$, $1$
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 436-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

Norms of images of operators of multiplier type with an arbitrary generator are estimated by using best approximations of periodic functions of one variable by trigonometric polynomials in the scale of the spaces $L_p$, $1$. A Bernstein-type inequality for the generalized derivative of the trigonometric polynomial generated by an arbitrary generator $\psi$, sufficient constructive $\psi$-smoothness conditions, estimates of best approximations of $\psi$-derivatives, estimates of best approximations of $\psi$-smooth functions, and an inverse theorem of approximation theory for the generalized modulus of smoothness generated by an arbitrary periodic generator are obtained as corollaries.
Keywords: best approximation, modulus of smoothness, generalized derivative.
@article{MZM_2019_106_3_a9,
     author = {K. V. Runovskii},
     title = {Generalized {Smoothness} and {Approximation} of {Periodic} {Functions} in the {Spaces~}$L_p$, $1<p<+\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {436--449},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a9/}
}
TY  - JOUR
AU  - K. V. Runovskii
TI  - Generalized Smoothness and Approximation of Periodic Functions in the Spaces~$L_p$, $1
JO  - Matematičeskie zametki
PY  - 2019
SP  - 436
EP  - 449
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a9/
LA  - ru
ID  - MZM_2019_106_3_a9
ER  - 
%0 Journal Article
%A K. V. Runovskii
%T Generalized Smoothness and Approximation of Periodic Functions in the Spaces~$L_p$, $1
%J Matematičeskie zametki
%D 2019
%P 436-449
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a9/
%G ru
%F MZM_2019_106_3_a9
K. V. Runovskii. Generalized Smoothness and Approximation of Periodic Functions in the Spaces~$L_p$, $1
                  
                

[1] A. I. Stepanets, Klassifikatsiya i priblizhenie periodicheskikh funktsii, Naukova dumka, Kiev, 1987 | MR | Zbl

[2] H. Triebel, Higher Analysis, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992 | MR

[3] K. Runovski, H.-J. Schmeisser, “Smoothness and function spaces generated by homogeneous multipliers”, J. Funct. Spaces Appl., 2012, Art. ID 643135 | MR

[4] H.-J. Schmeisser, W. Sickel, “Characterization of periodic function spaces via means of Abel–Poisson and Bessel-potential type”, J. Approx. Theory, 61:2 (1990), 239–262 | DOI | MR

[5] K. V. Runovskii, “Pryamaya teorema teorii priblizhenii dlya obschego modulya gladkosti”, Matem. zametki, 95:6 (2014), 899–910 | DOI | MR

[6] K. V. Runovskii, “Priblizhenie srednimi Fure i obobschennye moduli gladkosti”, Matem. zametki, 99:4 (2016), 574–587 | DOI | MR

[7] K. V. Runovskii, “Priblizhenie trigonometricheskimi polinomami, $K$-funktsionaly i obobschennye moduli gladkosti”, Matem. sb., 208:2 (2017), 70–87 | DOI | MR

[8] K. Runovski, H.-J. Schmeisser, “General moduli of smoothness and approximation by families of linear polynomial operators”, New Perspectives on Approximation and Sampling Theory, Birkhäuser, Cham, 2014, 269–298 | MR

[9] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Eucliadean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[10] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation. Vol. 1. One-Dimensional Theory, Academic Press, New York, 1971 | MR

[11] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl

[12] S. B. Stechkin, “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, Dokl. AN SSSR, 60 (1948), 1511–1514 | MR

[13] V. I. Ivanov, “Pryamye i obratnye teoremy teorii priblizheniya v metrike $L_p$ dlya $0

1$”, Matem. zametki, 18:5 (1975), 641–658 | MR | Zbl

[14] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0

1$”, Matem. sb., 98 (140):3 (11) (1975), 395–415 | MR | Zbl

[15] V. V. Arestov, “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[16] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[17] E. Belinski, E. Liflyand, “Approximation properties in $L_p$, $0

1$”, Funct. Approx. Comment. Math., 22 (1994), 189–199 | MR

[18] K. Runovski, H.-J. Schmeisser, “On some extensions of Bernstein's inequalities for trigonometric polynomials”, Funct. Approx. Comment. Math., 29 (2001), 125–142 | DOI | MR

[19] B. V. Simonov, S. Yu. Tikhonov, “Teoremy vlozheniya v konstruktivnoi teorii priblizhenii”, Matem. sb., 199:9 (2008), 107–148 | DOI | MR | Zbl

[20] P. L. Butzer, H. Dyckhoff, E. Görlich, R. L. Stens, “Best trigonometric approximation, fractional order derivatives and Lipschitz classes”, Canadian J. Math., 29:4 (1977), 781–793 | DOI | MR

[21] M. K. Potapov, B. V. Simonov, “Moduli gladkosti polozhitelnykh poryadkov funktsii iz prostranstv $L_p$, $1\le p\le +\infty$”, Sovremennye problemy matematiki i mekhaniki, Tr. mekh.-matem. fak-ta MGU, 7, no. 1, Izd-vo mekh.-mat. fak-ta MGU, M., 2011, 100–109

[22] K. V. Runovski, H.-J. Schmeisser, “Moduli of smoothness related to fractional Riesz-derivatives”, Z. Anal. Anwend., 34:1 (2015), 109–125 | MR