Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a5, author = {K. D. Kovalenko and A. M. Raigorodskii}, title = {Systems of {Representatives}}, journal = {Matemati\v{c}eskie zametki}, pages = {387--394}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a5/} }
K. D. Kovalenko; A. M. Raigorodskii. Systems of Representatives. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 387-394. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a5/
[1] V. E. Tarakanov, Kombinatornye zadachi i $(0,1)$-matritsy, Nauka, M., 1985 | MR
[2] A. M. Raigorodskii, Sistemy obschikh predstavitelei v kombinatorike i ikh prilozheniya v geometrii, MTsNMO, M., 2009
[3] P. Erdesh, Dzh. Spenser, Veroyatnostnye metody v kombinatorike, Mir, M., 1976 | MR
[4] J. Balogh, D. Cherkashin, S. Kiselev, “Coloring general Kneser graphs and hypergraphs via high-discrepancy hypergraphs”, European J. Combin., 79 (2019), 228–236 | DOI | MR
[5] L. E. Shabanov, “Turán-type results for distance graphs in an infinitesimal plane layer”, J. Math. Sci. (N.Y.), 236:5 (2019), 554–578 | DOI
[6] N. N. Kuzyurin, “Asimptoticheskoe issledovanie zadachi o pokrytii”, Problemy kibernetiki, 37 (1980), 19–56
[7] A. M. Raigorodskii, “Problema Borsuka dlya tselochislennykh mnogogrannikov”, Matem. sb., 193:10 (2002), 139–160 | DOI | MR | Zbl
[8] A. M. Raigorodskii, “Problemy Borsuka i Gryunbauma dlya reshetchatykh mnogogrannikov”, Izv. RAN. Ser. matem., 69:3 (2005), 81–108 | DOI | MR | Zbl
[9] A. M. Raigorodskii, “Three lectures on the Borsuk partition problem”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2007, 202–248 | MR
[10] L. I. Bogolyubskii, A. M. Raigorodskii, “Zamechanie o nizhnikh otsenkakh khromaticheskikh chisel prostranstv maloi razmernosti s metrikami $\ell_1$ i $\ell_2$”, Matem. zametki, 105:2 (2019), 187–213 | DOI
[11] A. M. Raigorodskii, “Combinatorial geometry and coding theory”, Fund. Inform., 145:3 (2016), 359–369 | DOI | MR
[12] A. M. Raigorodskii, “Defekt dopustimykh sharov i oktaedrov v reshetke i sistemy obschikh predstavitelei”, Matem. sb., 189:6 (1998), 117–141 | DOI | MR | Zbl
[13] A. M. Raigorodskii, “Veroyatnostnyi podkhod k zadache o defektakh dopustimykh mnozhestv v reshetke”, Matem. zametki, 68:6 (2000), 910–916 | DOI | MR | Zbl
[14] A. M. Raigorodskii, “On a problem in the geometry of numbers”, Tr. In-ta matem., 15:1 (2007), 111–117
[15] A. A. Bagan, A. M. Raigorodskii, “Defekt dopustimogo oktaedra v tsentrirovke tselochislennoi reshetki, porozhdennoi zadannym chislom vektorov”, Matem. zametki, 99:3 (2016), 457–459 | DOI | MR
[16] A. A. Bagan, “Defect of an admissible octahedron in a centering obtained by adding rational vectors to an integer lattice”, Mosc. J. Comb. Number Theory, 5:1-2 (2015), 3–13 | MR
[17] M. A. Fadin, “Defect of an octahedron in a rational lattice”, Discrete Math., 2019 (to appear)
[18] M. A. Fadin, A. M. Raigorodskii, “Maksimalnyi defekt dopustimogo oktaedra v ratsionalnoi reshetke”, UMN, 74:3 (447) (2019), 191–192 | DOI