Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a3, author = {Zhaoning Yang}, title = {Spaces of {Polynomials} {Related} to {Multiplier} {Maps}}, journal = {Matemati\v{c}eskie zametki}, pages = {350--376}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a3/} }
Zhaoning Yang. Spaces of Polynomials Related to Multiplier Maps. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 350-376. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a3/
[1] Yu. G. Zarkhin, “Mnogochleny ot odnoi peremennoi i rangi nekotorykh kasatelnykh otobrazhenii”, Matem. zametki, 91:4 (2012), 539–550 | DOI | MR
[2] Yu. G. Zarkhin, “Odnomernye polinomialnye otobrazheniya, periodicheskie tochki i multiplikatory”, Izv. RAN. Ser. matem., 77:4 (2013), 59–72 | DOI | MR | Zbl
[3] G. T. Buzzard, S. L. Hruska, Yu. Ilyashenko, “Kupka–Smale theorem for polynomial automorphisms of $\mathbb C^2$ and persistence of heteroclinic intersections”, Invent. Math., 161:1 (2005), 45–89 | DOI | MR | Zbl
[4] I. Gorbovickis, “Algebraic independence of multipliers of periodic orbits in the space of polynomial maps of one variable”, Ergodic Theory Dynam. Systems, 36:4 (2016), 1156–1166 | DOI | MR | Zbl
[5] E. Rees, “On a paper by Yuri G. Zarhin”, Eur. J. Math., 1:4 (2015), 717–720 | DOI | MR | Zbl
[6] D. S. Dummit, R. M. Foote, Abstract Algebra, John Wiley Sons, Hoboken, NJ, 2004 | MR | Zbl
[7] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2010 | MR | Zbl