Spaces of Polynomials Related to Multiplier Maps
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 350-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(x)$ be a complex polynomial of degree $n$. We associate $f$ with a $\mathbb{C}$-vector space $W(f)$ that consists of complex polynomials $p(x)$ of degree at most $n-2$ such that $f(x)$ divides $f''(x)p(x)-f'(x) p'(x)$. The space $W(f)$ first appeared in Yu. G. Zarhin's work, where a problem concerning dynamics in one complex variable posed by Yu. S. Ilyashenko was solved. In this paper, we show that $W(f)$ is nonvanishing if and only if $q(x)^2$ divides $f(x)$ for some quadratic polynomial $q(x)$. In that case, $W(f)$ has dimension $(n-1)-(n_1+n_2+2N_3)$ under certain conditions, where $n_i$ is the number of distinct roots of $f$ with multiplicity $i$ and $N_3$ is the number of distinct roots of $f$ with multiplicity at least $3$.
Mots-clés : complex polynomial of one variable, dimension, multipliers.
Keywords: vector space
@article{MZM_2019_106_3_a3,
     author = {Zhaoning Yang},
     title = {Spaces of {Polynomials} {Related} to {Multiplier} {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--376},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a3/}
}
TY  - JOUR
AU  - Zhaoning Yang
TI  - Spaces of Polynomials Related to Multiplier Maps
JO  - Matematičeskie zametki
PY  - 2019
SP  - 350
EP  - 376
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a3/
LA  - ru
ID  - MZM_2019_106_3_a3
ER  - 
%0 Journal Article
%A Zhaoning Yang
%T Spaces of Polynomials Related to Multiplier Maps
%J Matematičeskie zametki
%D 2019
%P 350-376
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a3/
%G ru
%F MZM_2019_106_3_a3
Zhaoning Yang. Spaces of Polynomials Related to Multiplier Maps. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 350-376. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a3/

[1] Yu. G. Zarkhin, “Mnogochleny ot odnoi peremennoi i rangi nekotorykh kasatelnykh otobrazhenii”, Matem. zametki, 91:4 (2012), 539–550 | DOI | MR

[2] Yu. G. Zarkhin, “Odnomernye polinomialnye otobrazheniya, periodicheskie tochki i multiplikatory”, Izv. RAN. Ser. matem., 77:4 (2013), 59–72 | DOI | MR | Zbl

[3] G. T. Buzzard, S. L. Hruska, Yu. Ilyashenko, “Kupka–Smale theorem for polynomial automorphisms of $\mathbb C^2$ and persistence of heteroclinic intersections”, Invent. Math., 161:1 (2005), 45–89 | DOI | MR | Zbl

[4] I. Gorbovickis, “Algebraic independence of multipliers of periodic orbits in the space of polynomial maps of one variable”, Ergodic Theory Dynam. Systems, 36:4 (2016), 1156–1166 | DOI | MR | Zbl

[5] E. Rees, “On a paper by Yuri G. Zarhin”, Eur. J. Math., 1:4 (2015), 717–720 | DOI | MR | Zbl

[6] D. S. Dummit, R. M. Foote, Abstract Algebra, John Wiley Sons, Hoboken, NJ, 2004 | MR | Zbl

[7] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2010 | MR | Zbl