Parseval Frames and the Discrete Walsh Transform
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 457-469
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $N=2^n$ and $N_1=2^{n-1}$, where $n$ is a natural number. Denote by ${\mathbb C}_N$ the space of complex $N$-periodic sequences with standard inner product. For any $N$-dimensional complex nonzero vector $(b_0,b_1,\dots,b_{N-1})$ satisfying the condition $$ |b_{l}|^2+|b_{l+N_1}|^2 \le \frac{2}{N^2}\,, \qquad l=0,1,\dots,N_1-1, $$ we find sequences $u_0,u_1,\dots,u_r\in {\mathbb C}_N$ such that the system of their binary shifts is a Parseval frame for ${\mathbb C}_N$. Moreover, the vector $(b_0,b_1,\dots, b_{N-1})$ specifies the discrete Walsh transform of the sequence $u_0$, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.
Keywords:
Walsh functions, discrete transforms, wavelets, frames, periodic sequences.
@article{MZM_2019_106_3_a11,
author = {Yu. A. Farkov and M. G. Robakidze},
title = {Parseval {Frames} and the {Discrete} {Walsh} {Transform}},
journal = {Matemati\v{c}eskie zametki},
pages = {457--469},
publisher = {mathdoc},
volume = {106},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/}
}
Yu. A. Farkov; M. G. Robakidze. Parseval Frames and the Discrete Walsh Transform. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 457-469. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/