Parseval Frames and the Discrete Walsh Transform
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 457-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $N=2^n$ and $N_1=2^{n-1}$, where $n$ is a natural number. Denote by ${\mathbb C}_N$ the space of complex $N$-periodic sequences with standard inner product. For any $N$-dimensional complex nonzero vector $(b_0,b_1,\dots,b_{N-1})$ satisfying the condition $$ |b_{l}|^2+|b_{l+N_1}|^2 \le \frac{2}{N^2}\,, \qquad l=0,1,\dots,N_1-1, $$ we find sequences $u_0,u_1,\dots,u_r\in {\mathbb C}_N$ such that the system of their binary shifts is a Parseval frame for ${\mathbb C}_N$. Moreover, the vector $(b_0,b_1,\dots, b_{N-1})$ specifies the discrete Walsh transform of the sequence $u_0$, and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.
Keywords: Walsh functions, discrete transforms, wavelets, frames, periodic sequences.
@article{MZM_2019_106_3_a11,
     author = {Yu. A. Farkov and M. G. Robakidze},
     title = {Parseval {Frames} and the {Discrete} {Walsh} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--469},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/}
}
TY  - JOUR
AU  - Yu. A. Farkov
AU  - M. G. Robakidze
TI  - Parseval Frames and the Discrete Walsh Transform
JO  - Matematičeskie zametki
PY  - 2019
SP  - 457
EP  - 469
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/
LA  - ru
ID  - MZM_2019_106_3_a11
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%A M. G. Robakidze
%T Parseval Frames and the Discrete Walsh Transform
%J Matematičeskie zametki
%D 2019
%P 457-469
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/
%G ru
%F MZM_2019_106_3_a11
Yu. A. Farkov; M. G. Robakidze. Parseval Frames and the Discrete Walsh Transform. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 457-469. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/

[1] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl

[2] O. Christensen, An Inroduction to Frames and Riesz Bases, Birkhäuser, Boston, 2016 | MR

[3] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005 | MR

[4] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl

[5] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Springer, Singapore, 2016 | MR

[6] Y. Kim Y, S. K. Narayan, G. Picioroaga, E. S. Weber (eds.), Frames and Harmonic Analysis, Contemp. Math., 451, Amer. Math. Soc., 2018 | MR

[7] M. S. Bespalov, “Sobstvennye podprostranstva diskretnogo preobrazovaniya Uolsha”, Probl. peredachi inform., 46:3 (2010), 60–79 | MR

[8] Yu. A. Farkov, “Examples of frames on the Cantor dyadic group”, J. Math. Sci. (N.Y.), 187:1 (2012), 22–34 | DOI | MR

[9] Yu. A. Farkov, S. A. Stroganov, “O diskretnykh diadicheskikh veivletakh dlya obrabotki izobrazhenii”, Izv. vuzov. Matem., 2011, no. 7, 57–66 | MR

[10] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR

[11] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | DOI | MR | Zbl

[12] Yu. A. Farkov, A. Yu. Maksimov, S. A. Stroganov, “On biorthogonal wavelets related to the Walsh functions”, Int. J. Wavelets Multiresolut. Inf. Process., 9:3 (2011), 485–499 | DOI | MR

[13] M. Freizer, Vvedenie v veivlety v svete lineinoi algebry, BINOM, Laboratoriya znanii, M., 2008 | MR

[14] S. A. Broughton, K. M. Bryan, Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing, John Wiley Sons, Hoboken, NJ, 2009 | MR

[15] V. N. Malozemov, S. M. Masharskii, Osnovy diskretnogo garmonicheskogo analiza, Izd-vo “Lan”, SPb., 2012

[16] E. A. Rodionov, “O primenenii veivletov k tsifrovoi obrabotke signalov”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:2 (2016), 217–225 | DOI | MR

[17] A. V. Krivoshein, E. A. Lebedeva, “Uncertainty principle for the Cantor dyadic group”, J. Math. Anal. Appl., 423:2 (2015), 1231–1242 | DOI | MR

[18] Yu. A. Farkov, “Diskretnye veivlety i preobrazovanie Vilenkina–Krestensona”, Matem. zametki, 89:6 (2011), 914–928 | DOI | MR

[19] Yu. A. Farkov, E. A. Rodionov, “On biorthogonal discrete wavelet bases”, Int. J. Wavelets Multiresolut. Inf. Process., 13:1 (2015), 1550002 | MR

[20] Yu. A. Farkov, M. G. Robakidze, “Primenenie funktsii Uolsha k postroeniyu freimov Parsevalya v prostranstvakh periodicheskikh posledovatelnostei”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 19-i mezhdunarodnoi Saratovskoi zimnei shkoly, posvyaschennoi 90-letiyu so dnya rozhdeniya akademika P. L. Ulyanova, Nauchnaya kniga, Saratov, 2018, 265–267

[21] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR | Zbl

[22] P. G. Casazza, J. Kovačević, “Equal-norm tight frames with erasures”, Adv. Comput. Math., 18:2-4 (2003), 387–430 | MR

[23] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR

[24] Yu. Farkov, E. Lebedeva, M. Skopina, “Wavelet frames on Vilenkin groups and their approximation properties”, Int. J. Wavelets Multiresolut. Inf. Process., 13:5 (2015), 1550036 | MR

[25] Yu. A. Farkov, “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincare J. Anal. Appl., 2015, no. 2, 13–36 | MR

[26] Yu. A. Farkov, “Ortogonalnye vspleski v analize Uolsha”, Obobschennye integraly i garmonicheskii analiz, Sovremennye problemy matematiki i mekhaniki, 11, no. 1, Izd-vo Mosk. un-ta, M., 2016, 62–75

[27] Yu. A. Farkov, “Parametricheskie mnozhestva dlya freimov v analize Uolsha”, Vestn. Evraziiskogo nats. un-ta im. L. N. Gumileva. Ser. Matem. Inform. Mekh., 124:3 (2018), 114–119