Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a11, author = {Yu. A. Farkov and M. G. Robakidze}, title = {Parseval {Frames} and the {Discrete} {Walsh} {Transform}}, journal = {Matemati\v{c}eskie zametki}, pages = {457--469}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/} }
Yu. A. Farkov; M. G. Robakidze. Parseval Frames and the Discrete Walsh Transform. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 457-469. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a11/
[1] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl
[2] O. Christensen, An Inroduction to Frames and Riesz Bases, Birkhäuser, Boston, 2016 | MR
[3] S. Malla, Veivlety v obrabotke signalov, Mir, M., 2005 | MR
[4] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl
[5] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Springer, Singapore, 2016 | MR
[6] Y. Kim Y, S. K. Narayan, G. Picioroaga, E. S. Weber (eds.), Frames and Harmonic Analysis, Contemp. Math., 451, Amer. Math. Soc., 2018 | MR
[7] M. S. Bespalov, “Sobstvennye podprostranstva diskretnogo preobrazovaniya Uolsha”, Probl. peredachi inform., 46:3 (2010), 60–79 | MR
[8] Yu. A. Farkov, “Examples of frames on the Cantor dyadic group”, J. Math. Sci. (N.Y.), 187:1 (2012), 22–34 | DOI | MR
[9] Yu. A. Farkov, S. A. Stroganov, “O diskretnykh diadicheskikh veivletakh dlya obrabotki izobrazhenii”, Izv. vuzov. Matem., 2011, no. 7, 57–66 | MR
[10] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR
[11] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | DOI | MR | Zbl
[12] Yu. A. Farkov, A. Yu. Maksimov, S. A. Stroganov, “On biorthogonal wavelets related to the Walsh functions”, Int. J. Wavelets Multiresolut. Inf. Process., 9:3 (2011), 485–499 | DOI | MR
[13] M. Freizer, Vvedenie v veivlety v svete lineinoi algebry, BINOM, Laboratoriya znanii, M., 2008 | MR
[14] S. A. Broughton, K. M. Bryan, Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing, John Wiley Sons, Hoboken, NJ, 2009 | MR
[15] V. N. Malozemov, S. M. Masharskii, Osnovy diskretnogo garmonicheskogo analiza, Izd-vo “Lan”, SPb., 2012
[16] E. A. Rodionov, “O primenenii veivletov k tsifrovoi obrabotke signalov”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:2 (2016), 217–225 | DOI | MR
[17] A. V. Krivoshein, E. A. Lebedeva, “Uncertainty principle for the Cantor dyadic group”, J. Math. Anal. Appl., 423:2 (2015), 1231–1242 | DOI | MR
[18] Yu. A. Farkov, “Diskretnye veivlety i preobrazovanie Vilenkina–Krestensona”, Matem. zametki, 89:6 (2011), 914–928 | DOI | MR
[19] Yu. A. Farkov, E. A. Rodionov, “On biorthogonal discrete wavelet bases”, Int. J. Wavelets Multiresolut. Inf. Process., 13:1 (2015), 1550002 | MR
[20] Yu. A. Farkov, M. G. Robakidze, “Primenenie funktsii Uolsha k postroeniyu freimov Parsevalya v prostranstvakh periodicheskikh posledovatelnostei”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 19-i mezhdunarodnoi Saratovskoi zimnei shkoly, posvyaschennoi 90-letiyu so dnya rozhdeniya akademika P. L. Ulyanova, Nauchnaya kniga, Saratov, 2018, 265–267
[21] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Izd-vo LKI, M., 2008 | MR | Zbl
[22] P. G. Casazza, J. Kovačević, “Equal-norm tight frames with erasures”, Adv. Comput. Math., 18:2-4 (2003), 387–430 | MR
[23] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR
[24] Yu. Farkov, E. Lebedeva, M. Skopina, “Wavelet frames on Vilenkin groups and their approximation properties”, Int. J. Wavelets Multiresolut. Inf. Process., 13:5 (2015), 1550036 | MR
[25] Yu. A. Farkov, “Constructions of MRA-based wavelets and frames in Walsh analysis”, Poincare J. Anal. Appl., 2015, no. 2, 13–36 | MR
[26] Yu. A. Farkov, “Ortogonalnye vspleski v analize Uolsha”, Obobschennye integraly i garmonicheskii analiz, Sovremennye problemy matematiki i mekhaniki, 11, no. 1, Izd-vo Mosk. un-ta, M., 2016, 62–75
[27] Yu. A. Farkov, “Parametricheskie mnozhestva dlya freimov v analize Uolsha”, Vestn. Evraziiskogo nats. un-ta im. L. N. Gumileva. Ser. Matem. Inform. Mekh., 124:3 (2018), 114–119