Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a10, author = {H. Saremi and A. Mafi}, title = {On the {Degree} of {Hilbert} {Polynomials} of {Derived} {Functors}}, journal = {Matemati\v{c}eskie zametki}, pages = {450--456}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a10/} }
H. Saremi; A. Mafi. On the Degree of Hilbert Polynomials of Derived Functors. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 450-456. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a10/
[1] V. Kodiyalam, “Homological invariants of powers of an ideal”, Proc. Amer. Math. Soc., 118:3 (1993), 757–764 | DOI | MR
[2] E. Theodorescu, “Derived functions and Hilbert polynomials”, Math. Proc. Cambridge Philos. Soc., 132:1 (2002), 75–88 | DOI | MR
[3] E. Theodorescu, “Bivariate Hilbert functions for the torsion functor”, J. Algebra, 265:1 (2003), 136–147 | DOI | MR
[4] S. Iyengar, T. J. Puthenpurakal, “Hilbert–Samuel functions of modules over Cohen–Macaulay rings”, Proc. Amer. Math. Soc., 135:3 (2007), 637–648 | DOI | MR
[5] D. Katz, E. Theodorescu, “On the degree of Hilbert polynomials associated to the torsion functor”, Proc. Amer. Math. Soc., 135:10 (2007), 3073–3082 | DOI | MR
[6] G. Failla, M. La Barbiera, P. L. Staglianó, “Betti numbers of powers of ideals”, Matematiche (Catania), 63:2 (2008), 191–195 | MR
[7] T. Marley, Hilbert Functions in Cohen–Macaulay Rings, Ph.D. Thesis, Purdue Univ., 1989
[8] W. Bruns, J. Herzog, Cohen–Macaulay rings, Cambridge Univ. Press, Cambridge, 1998 | MR
[9] E. Matlis, “The Koszul complex and duality”, Comm. Algebra, 1 (1974), 87–144 | DOI | MR
[10] E. Enochs, “A modification of Grothendieck's spectral sequence”, Nagoya Math. J., 112 (1988), 53–61 | DOI | MR
[11] T. Cortadellas, S. Zarzuela, “On the depth of the fiber cone of filtrations”, J. Algebra, 198:2 (1997), 428–445 | DOI | MR
[12] T. Cortadellas, “Fiber cones with almost maximal depth”, Comm. Algebra, 33:3 (2005), 953–963 | DOI | MR
[13] S. Huckaba, T. Marley, “Hilbert coefficients and the depths of associated grade rings”, J. London Math. Soc. (2), 56:1 (1997), 64–76 | DOI | MR
[14] T. J. Puthenpurakal, “Ratliff-Rush filtration, regularity and depth of higher associated graded modules. I”, J. Pure Appl. Algebra, 208:1 (2007), 159–176 | DOI | MR