On the Degree of Hilbert Polynomials of Derived Functors
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 450-456
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a $d$-dimensional Cohen–Macaulay local ring $(R,\mathfrak m)$, let $I$ be an $\mathfrak{m}$-primary ideal, and let $J$ be a minimal reduction ideal of $I$. If $M$ is a maximal Cohen–Macaulay $R$-module, then, for $n$ large enough and $1\le i\le d$, the lengths of the modules $\operatorname{Ext}^i_R(R/J,M/I^nM)$ and $\operatorname{Tor}_i^R(R/J,M/I^nM)$ are polynomials of degree $d-1$. It is also shown that $$ \operatorname{deg}\beta_i^R(M/I^nM) =\operatorname{deg}\mu^i_R(M/I^nM)=d-1, $$ where $\beta_i^R(\,\cdot\,)$ and $\mu^i_R(\,\cdot\,)$ are the $i$th Betti number and the $i$th Bass number, respectively.
Mots-clés :
Hilbert–Samuel polynomial
Keywords: derived functors.
Keywords: derived functors.
@article{MZM_2019_106_3_a10,
author = {H. Saremi and A. Mafi},
title = {On the {Degree} of {Hilbert} {Polynomials} of {Derived} {Functors}},
journal = {Matemati\v{c}eskie zametki},
pages = {450--456},
publisher = {mathdoc},
volume = {106},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a10/}
}
H. Saremi; A. Mafi. On the Degree of Hilbert Polynomials of Derived Functors. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 450-456. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a10/