The Exact Baire Class of Topological Entropy of Nonautonomous Dynamical Systems
Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 333-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a parametric family of nonautonomous dynamical systems continuously depending on a parameter from some metric space. For any such family, the topological entropy of its dynamical systems is studied as a function of the parameter from the point of view of the Baire classification of functions.
Keywords: nonautonomous dynamical system, topological entropy, Baire classification of functions.
@article{MZM_2019_106_3_a1,
     author = {A. N. Vetokhin},
     title = {The {Exact} {Baire} {Class} of {Topological} {Entropy} of {Nonautonomous} {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--340},
     publisher = {mathdoc},
     volume = {106},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a1/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - The Exact Baire Class of Topological Entropy of Nonautonomous Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2019
SP  - 333
EP  - 340
VL  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a1/
LA  - ru
ID  - MZM_2019_106_3_a1
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T The Exact Baire Class of Topological Entropy of Nonautonomous Dynamical Systems
%J Matematičeskie zametki
%D 2019
%P 333-340
%V 106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a1/
%G ru
%F MZM_2019_106_3_a1
A. N. Vetokhin. The Exact Baire Class of Topological Entropy of Nonautonomous Dynamical Systems. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 333-340. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a1/

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, “Topological entropy”, Trans. Amer. Math. Soc., 114:2 (1965), 309–319 | DOI | MR

[2] S. Kolyada, L'. Snoha, “Topological entropy of nonautonomous dynamical systems”, Random Comput. Dynam., 4:2-3 (1996), 205–233 | MR

[3] M. Misiurewicz, “Horseshoes for mappings of the interval”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27:2 (1979), 167–169 | MR

[4] A. N. Vetokhin, “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:6 (2017), 448–453 | DOI

[5] A. N. Vetokhin, “Neprinadlezhnost pervomu klassu Bera topologicheskoi entropii na prostranstve gomeomorfizmov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 2, 44–48 | MR

[6] A. A. Astrelina, “O berovskom klasse topologicheskoi entropii neavtonomnykh dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2018, no. 5, 64–67

[7] F. Khausdorf, Teoriya mnozhestv, ONTI, M., 1937 | Zbl

[8] A. N. Vetokhin, “Klass Bera maksimalnykh polunepreryvnykh snizu minorant pokazatelei Lyapunova”, Differents. uravneniya, 34:10 (1998), 1313–1317 | MR