Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a1, author = {A. N. Vetokhin}, title = {The {Exact} {Baire} {Class} of {Topological} {Entropy} of {Nonautonomous} {Dynamical} {Systems}}, journal = {Matemati\v{c}eskie zametki}, pages = {333--340}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a1/} }
A. N. Vetokhin. The Exact Baire Class of Topological Entropy of Nonautonomous Dynamical Systems. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 333-340. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a1/
[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, “Topological entropy”, Trans. Amer. Math. Soc., 114:2 (1965), 309–319 | DOI | MR
[2] S. Kolyada, L'. Snoha, “Topological entropy of nonautonomous dynamical systems”, Random Comput. Dynam., 4:2-3 (1996), 205–233 | MR
[3] M. Misiurewicz, “Horseshoes for mappings of the interval”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27:2 (1979), 167–169 | MR
[4] A. N. Vetokhin, “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:6 (2017), 448–453 | DOI
[5] A. N. Vetokhin, “Neprinadlezhnost pervomu klassu Bera topologicheskoi entropii na prostranstve gomeomorfizmov”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 2, 44–48 | MR
[6] A. A. Astrelina, “O berovskom klasse topologicheskoi entropii neavtonomnykh dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2018, no. 5, 64–67
[7] F. Khausdorf, Teoriya mnozhestv, ONTI, M., 1937 | Zbl
[8] A. N. Vetokhin, “Klass Bera maksimalnykh polunepreryvnykh snizu minorant pokazatelei Lyapunova”, Differents. uravneniya, 34:10 (1998), 1313–1317 | MR