Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_3_a0, author = {M. Akhmejanova}, title = {On {Equitable} {Colorings} of {Hypergraphs}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--332}, publisher = {mathdoc}, volume = {106}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a0/} }
M. Akhmejanova. On Equitable Colorings of Hypergraphs. Matematičeskie zametki, Tome 106 (2019) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/MZM_2019_106_3_a0/
[1] P. Erdős, A. Hajnal, “On a property of families of sets”, Acta Math. Acad. Sci. Hungar., 12:1-2 (1961), 87–123 | MR
[2] J. Radhakrishnan, A. Srinivasan, “Improved bounds and algorithms for hypergraph 2-coloring”, Random Structures Algorithms, 16:1 (2000), 4–32 | MR
[3] P. Erdős, “On a combinatorial problem. II”, Acta Math. Acad. Sci. Hungar., 15:3-4 (1964), 445–447 | DOI | MR
[4] A. M. Raigorodskii, D. A. Shabanov, “Zadacha Erdesha–Khainala o raskraskakh gipergrafov, ee obobscheniya i smezhnye problemy”, UMN, 66:5 (401) (2011), 109–182 | DOI | MR | Zbl
[5] A. Hajnal, E. Szemerédi, “Proof of a conjecture of P. Erdős”, Combinatorial Theory and Its Applications, II, North-Holland, Amsterdam, 1970, 601–623 | MR
[6] P. Erdős, “Extremal problems in graph theory”, Theory of Graphs and its Applications, Publ. House Czechoslovak Acad. Sci., Prague, 1964, 29–36 | MR
[7] H. A. Kierstead, A. V. Kostochka, “A short proof of the Hajnal–Szemerédi theorem on equitable colouring”, Combin. Probab. Comput., 17:2 (2008), 265–270 | DOI | MR
[8] H. A. Kierstead, A. V. Kostochka, M. Mydlarz, E. Szemerédi, “A fast algorithm for equitable coloring”, Combinatorica, 30:2 (2010), 217–224 | DOI | MR
[9] D. A. Shabanov, “Equitable two-colorings of uniform hypergraphs”, European J. Combin., 43 (2015), 185–203 | DOI | MR