On Sums of Products in~$\mathbb F_p\times \mathbb F_p$
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 262-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of sums of products in $\mathbb F_p\times \mathbb F_p$ is considered. An estimate for sums of products improving Bourgain's result of 2005 is obtained. This estimate is applied to the problem of estimating polynomial exponential sums over multiplicative subgroups in $\mathbb F_p^*$.
Keywords: sums of products.
@article{MZM_2019_106_2_a8,
     author = {S. N. Popova},
     title = {On {Sums} of {Products} in~$\mathbb F_p\times \mathbb F_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--279},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a8/}
}
TY  - JOUR
AU  - S. N. Popova
TI  - On Sums of Products in~$\mathbb F_p\times \mathbb F_p$
JO  - Matematičeskie zametki
PY  - 2019
SP  - 262
EP  - 279
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a8/
LA  - ru
ID  - MZM_2019_106_2_a8
ER  - 
%0 Journal Article
%A S. N. Popova
%T On Sums of Products in~$\mathbb F_p\times \mathbb F_p$
%J Matematičeskie zametki
%D 2019
%P 262-279
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a8/
%G ru
%F MZM_2019_106_2_a8
S. N. Popova. On Sums of Products in~$\mathbb F_p\times \mathbb F_p$. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 262-279. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a8/

[1] O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New sum-product type estimates over finite fields”, Adv. Math., 293 (2016), 589–605 | DOI | MR | Zbl

[2] G. Shakan, I. D. Shkredov, Breaking the $6/5$ Threshold for Sums and Products Modulo a Prime, 2018, arXiv: 1806.07091

[3] J. Bourgain, “Mordell's exponential sum estimate revisited”, J. Amer. Math. Soc., 18:2 (2005), 477–499 | DOI | MR | Zbl

[4] T. Tao, “The sum-product phenomenon in arbitrary rings”, Contrib. Discrete Math., 4:2 (2009), 59–82 | MR | Zbl

[5] M. Garaev, “The sum product estimate for large subsets of prime fields”, Proc. Amer. Math. Soc., 136 (2008), 2735–2739 | DOI | MR | Zbl

[6] I. Z. Ruzsa, Sumsets and Structure in Combinatorial Number Theory and Additive Group Theory, Springer, New York, 2009 | MR

[7] N. Katz, T. Tao, “Some connections between the Falconer and Furstenburg conjectures”, New York J. Math., 7 (2001), 148–187 | MR

[8] T. Tao, V. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[9] I. D. Shkredov, Some Remarks on the Asymmetric Sum-Product Phenomenon, 2017, arXiv: 1705.09703

[10] J. Bourgain, M. Garaev, “On a variant of sum-product estimates and explicit exponential sum bounds in prime fields”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 1–21 | DOI | MR | Zbl