Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_2_a8, author = {S. N. Popova}, title = {On {Sums} of {Products} in~$\mathbb F_p\times \mathbb F_p$}, journal = {Matemati\v{c}eskie zametki}, pages = {262--279}, publisher = {mathdoc}, volume = {106}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a8/} }
S. N. Popova. On Sums of Products in~$\mathbb F_p\times \mathbb F_p$. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 262-279. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a8/
[1] O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New sum-product type estimates over finite fields”, Adv. Math., 293 (2016), 589–605 | DOI | MR | Zbl
[2] G. Shakan, I. D. Shkredov, Breaking the $6/5$ Threshold for Sums and Products Modulo a Prime, 2018, arXiv: 1806.07091
[3] J. Bourgain, “Mordell's exponential sum estimate revisited”, J. Amer. Math. Soc., 18:2 (2005), 477–499 | DOI | MR | Zbl
[4] T. Tao, “The sum-product phenomenon in arbitrary rings”, Contrib. Discrete Math., 4:2 (2009), 59–82 | MR | Zbl
[5] M. Garaev, “The sum product estimate for large subsets of prime fields”, Proc. Amer. Math. Soc., 136 (2008), 2735–2739 | DOI | MR | Zbl
[6] I. Z. Ruzsa, Sumsets and Structure in Combinatorial Number Theory and Additive Group Theory, Springer, New York, 2009 | MR
[7] N. Katz, T. Tao, “Some connections between the Falconer and Furstenburg conjectures”, New York J. Math., 7 (2001), 148–187 | MR
[8] T. Tao, V. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[9] I. D. Shkredov, Some Remarks on the Asymmetric Sum-Product Phenomenon, 2017, arXiv: 1705.09703
[10] J. Bourgain, M. Garaev, “On a variant of sum-product estimates and explicit exponential sum bounds in prime fields”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 1–21 | DOI | MR | Zbl