Some Modular Inequalities in Lebesgue Spaces
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 241-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the modular inequalities for some linear operators on Lebesgue spaces with variable exponent on the complex plane. The main results show that the variable exponent must be constant if modular inequalities hold.
Keywords: variable exponent, modular inequality
Mots-clés : Lebesgue space on the complex plane.
@article{MZM_2019_106_2_a6,
     author = {M. Izuki and T. Kayama and T. Noi and Y. Sawano},
     title = {Some {Modular} {Inequalities} in {Lebesgue} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a6/}
}
TY  - JOUR
AU  - M. Izuki
AU  - T. Kayama
AU  - T. Noi
AU  - Y. Sawano
TI  - Some Modular Inequalities in Lebesgue Spaces
JO  - Matematičeskie zametki
PY  - 2019
SP  - 241
EP  - 247
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a6/
LA  - ru
ID  - MZM_2019_106_2_a6
ER  - 
%0 Journal Article
%A M. Izuki
%A T. Kayama
%A T. Noi
%A Y. Sawano
%T Some Modular Inequalities in Lebesgue Spaces
%J Matematičeskie zametki
%D 2019
%P 241-247
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a6/
%G ru
%F MZM_2019_106_2_a6
M. Izuki; T. Kayama; T. Noi; Y. Sawano. Some Modular Inequalities in Lebesgue Spaces. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a6/

[1] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser, Heidelberg, 2013 | MR | Zbl

[2] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, “The maximal function on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 28:1 (2003), 223–238 | MR | Zbl

[3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, “Corrections to: "The maximal function on variable $L^p$ spaces"”, Ann. Acad. Sci. Fenn. Math., 29:1 (2004), 247–249 | MR | Zbl

[4] L. Diening, “Maximal function on generalized Lebesgue spaces $L^{p(\,\cdot\,)}$”, Math. Inequal Appl., 7:2 (2004), 245–253 | MR | Zbl

[5] A. K. Lerner, “On modular inequalities in variable $L^p$ spaces”, Arch. Math. (Basel), 85:6 (2005), 538–543 | DOI | MR | Zbl

[6] M. Izuki, E. Nakai, Y. Sawano, “The Hardy–Littlewood maximal operator on Lebesgue spaces with variable exponent”, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B42, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 51–94 | MR

[7] M. Izuki, “Wavelets and modular inequalities in variable $L^p$ spaces”, Georgian Math. J., 15:2 (2008), 281–293 | MR | Zbl

[8] M. Izuki, E. Nakai, Y. Sawano, “Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent”, Ann. Acad. Sci. Fenn. Math., 40:2 (2015), 551–571 | DOI | MR | Zbl

[9] G. R. Chacón, H. Rafeiro, “Variable exponent Bergman spaces”, Nonlinear Anal., 105 (2014), 41–49 | DOI | MR | Zbl

[10] G. R. Chacón, H. Rafeiro, “Toeplitz operators on variable exponent Bergman spaces”, Mediterr. J. Math., 13:5 (2016), 3525–3536 | DOI | MR | Zbl

[11] G. R. Chacón, H. Rafeiro, J. C. Vallejo, “Carleson measures for variable exponent Bergman spaces”, Complex Anal. Oper. Theory, 11:7 (2017), 1623–1638 | DOI | MR | Zbl

[12] A. Karapetyants, S. Samko, “Mixed norm variable exponent Bergman space on the unit disc”, Complex Var. Elliptic Equ., 61:8 (2016), 1090–1106 | DOI | MR | Zbl

[13] A. Karapetyants, S. Samko, “On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space”, J. Math. Sci. (N.Y.), 226:4 (2017), 344–354 | DOI | MR | Zbl

[14] M. Izuki, T. Koyama, T. Noi, A Modular Inequality in Lebesgue Spaces with Variable Exponent on the Open Unit Disk, Preprint, 2018

[15] G. A. Chacón, G. R. Chacón, Variable Exponent Fock Spaces, 2017, arXiv: 1709.00724v1

[16] K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math., 263, Springer, New York, 2012 | MR | Zbl

[17] J. Isralowitz, “Invertible Toeplitz products, weighted norm inequalities, and $A_p$ weights”, J. Operator Theory, 7:2 (2014), 381–410 | DOI | MR