Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_2_a6, author = {M. Izuki and T. Kayama and T. Noi and Y. Sawano}, title = {Some {Modular} {Inequalities} in {Lebesgue} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {241--247}, publisher = {mathdoc}, volume = {106}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a6/} }
M. Izuki; T. Kayama; T. Noi; Y. Sawano. Some Modular Inequalities in Lebesgue Spaces. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a6/
[1] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser, Heidelberg, 2013 | MR | Zbl
[2] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, “The maximal function on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 28:1 (2003), 223–238 | MR | Zbl
[3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, “Corrections to: "The maximal function on variable $L^p$ spaces"”, Ann. Acad. Sci. Fenn. Math., 29:1 (2004), 247–249 | MR | Zbl
[4] L. Diening, “Maximal function on generalized Lebesgue spaces $L^{p(\,\cdot\,)}$”, Math. Inequal Appl., 7:2 (2004), 245–253 | MR | Zbl
[5] A. K. Lerner, “On modular inequalities in variable $L^p$ spaces”, Arch. Math. (Basel), 85:6 (2005), 538–543 | DOI | MR | Zbl
[6] M. Izuki, E. Nakai, Y. Sawano, “The Hardy–Littlewood maximal operator on Lebesgue spaces with variable exponent”, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B42, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 51–94 | MR
[7] M. Izuki, “Wavelets and modular inequalities in variable $L^p$ spaces”, Georgian Math. J., 15:2 (2008), 281–293 | MR | Zbl
[8] M. Izuki, E. Nakai, Y. Sawano, “Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent”, Ann. Acad. Sci. Fenn. Math., 40:2 (2015), 551–571 | DOI | MR | Zbl
[9] G. R. Chacón, H. Rafeiro, “Variable exponent Bergman spaces”, Nonlinear Anal., 105 (2014), 41–49 | DOI | MR | Zbl
[10] G. R. Chacón, H. Rafeiro, “Toeplitz operators on variable exponent Bergman spaces”, Mediterr. J. Math., 13:5 (2016), 3525–3536 | DOI | MR | Zbl
[11] G. R. Chacón, H. Rafeiro, J. C. Vallejo, “Carleson measures for variable exponent Bergman spaces”, Complex Anal. Oper. Theory, 11:7 (2017), 1623–1638 | DOI | MR | Zbl
[12] A. Karapetyants, S. Samko, “Mixed norm variable exponent Bergman space on the unit disc”, Complex Var. Elliptic Equ., 61:8 (2016), 1090–1106 | DOI | MR | Zbl
[13] A. Karapetyants, S. Samko, “On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space”, J. Math. Sci. (N.Y.), 226:4 (2017), 344–354 | DOI | MR | Zbl
[14] M. Izuki, T. Koyama, T. Noi, A Modular Inequality in Lebesgue Spaces with Variable Exponent on the Open Unit Disk, Preprint, 2018
[15] G. A. Chacón, G. R. Chacón, Variable Exponent Fock Spaces, 2017, arXiv: 1709.00724v1
[16] K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math., 263, Springer, New York, 2012 | MR | Zbl
[17] J. Isralowitz, “Invertible Toeplitz products, weighted norm inequalities, and $A_p$ weights”, J. Operator Theory, 7:2 (2014), 381–410 | DOI | MR