A Bound for the Number of Preimages of a Polynomial Mapping
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 212-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the number of field elements that can be taken to roots of unity of fixed multiplicity by means of several given polynomials is obtained. This bound generalizes the bound obtained by V'yugin and Shkredov in 2012 to the case of polynomials of degree higher than $1$. This bound was obtained both over the residue field modulo a prime and over the complex field.
Mots-clés : polynomial
Keywords: field, subgroup, Stepanov's method.
@article{MZM_2019_106_2_a4,
     author = {I. V. Vyugin},
     title = {A {Bound} for the {Number} of {Preimages} of a {Polynomial} {Mapping}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {212--221},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a4/}
}
TY  - JOUR
AU  - I. V. Vyugin
TI  - A Bound for the Number of Preimages of a Polynomial Mapping
JO  - Matematičeskie zametki
PY  - 2019
SP  - 212
EP  - 221
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a4/
LA  - ru
ID  - MZM_2019_106_2_a4
ER  - 
%0 Journal Article
%A I. V. Vyugin
%T A Bound for the Number of Preimages of a Polynomial Mapping
%J Matematičeskie zametki
%D 2019
%P 212-221
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a4/
%G ru
%F MZM_2019_106_2_a4
I. V. Vyugin. A Bound for the Number of Preimages of a Polynomial Mapping. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 212-221. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a4/

[1] A. García, J. F. Voloch, “Fermat curves over finite fields”, J. Number Theory, 30:3 (1988), 345–356 | DOI | MR | Zbl

[2] D. R. Heath-Brown, S. V. Konyagin, “New bounds for Gauss sums derived from $k$th powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl

[3] S. A. Stepanov, “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1171–1181 | MR | Zbl

[4] I. V. Vyugin, I. D. Shkredov, “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl

[5] I. V. Vyugin, E. V. Solodkova, I. D. Shkredov, “Peresecheniya sdvigov multiplikativnykh podgrupp”, Matem. zametki, 100:2 (2016), 185–195 | DOI | MR | Zbl

[6] F. K. Schmidt, “Die Wronskische Determinante in beliebigen differenzierbaren Functionenkorpern”, Math. Z., 45:1 (1939), 62–74 | DOI | MR

[7] A. Garcia, J. F. Voloch, “Wronskians and linear independence in fields of prime characteristic”, Manuscripta Math., 59:4 (1987), 457–469 | DOI | MR | Zbl

[8] J. H. Evertse, H. P. Schlickewei, W. M. Schmidt, “Linear equations in variables which lie in a multiplicative group”, Ann. of Math. (2), 155:3 (2002), 807–836 | DOI | MR | Zbl