Ergodic Properties of Tame Dynamical Systems
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 295-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the $*$-weak decomposability into ergodic components of a topological $\mathbb N_0$-dynamical system $(\Omega,\varphi)$, where $\varphi$ is a continuous endomorphism of a compact metric space $\Omega$, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup $E(\Omega,\varphi)$ consists of endomorphisms of $\Omega$ of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of $(\Omega,\varphi)$ and the mutual structure of minimal sets and ergodic measures is discussed.
Keywords: ergodic mean, tame dynamical system, enveloping semigroup.
@article{MZM_2019_106_2_a10,
     author = {A. V. Romanov},
     title = {Ergodic {Properties} of {Tame} {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--306},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a10/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Ergodic Properties of Tame Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2019
SP  - 295
EP  - 306
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a10/
LA  - ru
ID  - MZM_2019_106_2_a10
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Ergodic Properties of Tame Dynamical Systems
%J Matematičeskie zametki
%D 2019
%P 295-306
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a10/
%G ru
%F MZM_2019_106_2_a10
A. V. Romanov. Ergodic Properties of Tame Dynamical Systems. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 295-306. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a10/

[1] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR

[2] D. Okstobi, “Ergodicheskie mnozhestva”, UMN, 8:3 (55) (1953), 75–97 | MR

[3] A. Köhler, “Enveloping semigroups for flows”, Proc. Roy. Irish Acad. Sect. A, 95:2 (1995), 179–191 | MR | Zbl

[4] E. Glasner, “Enveloping semigroups in topological dynamics”, Topology Appl., 154:11 (2007), 2344–2363 | DOI | MR | Zbl

[5] E. Glasner, “The structure of tame minimal dynamical systems”, Ergodic Theory Dynam. Systems, 27:6 (2007), 1819–1837 | DOI | MR | Zbl

[6] E. Glasner, M. Megrelishvili, “More on tame dynamical systems”, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., 2213, Springer, Cham, 2018, 351–392 | DOI | MR | Zbl

[7] W. Huang, “Tame systems and scrambled pairs under an abelian group action”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1549–1567 | DOI | MR | Zbl

[8] D. Kerr, H. Li, “Independence in topological and $C^*$-dynamics”, Math. Ann., 338:4 (2007), 869–926 | DOI | MR | Zbl

[9] A. V. Romanov, “Ergodic properties of discrete dynamical systems and enveloping semigroups”, Ergodic Theory Dynam. Systems, 36:1 (2016), 198–214 | DOI | MR | Zbl

[10] H. Kreidler, “Compact operator semigroups applied to dynamical systems”, Semigroup Forum, 97:3 (2018), 523–547 | MR | Zbl

[11] A. V. Romanov, “O slaboi${}^*$ skhodimosti operatornykh srednikh”, Izv. RAN. Ser. matem., 75:6 (2011), 79–98 | DOI | MR | Zbl

[12] V. Lebedev, Tame Semicascades and Cascades Generated by Affine Self-Mappings of the $d$-Torus, 2018, arXiv: 1806.06386

[13] W. F. Eberlein, “Abstract ergodic theorems and weak almost periodic functions”, Trans. Amer. Math. Soc., 67:1 (1949), 217–240 | DOI | MR | Zbl

[14] R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969 | MR | Zbl

[15] H. P. Rosenthal, “A characterization of Banach spaces containing $\ell^1$”, Proc. Nat. Acad. Sci. U.S.A., 71:6 (1974), 2411–2413 | DOI | MR | Zbl

[16] A. Iwanik, “On pointwise convergence of Cesáro means and separation properties for Markov operators on $C(X)$”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:9-10 (1981), 515–520 | MR | Zbl

[17] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[18] Y. Katznelson, B. Weiss, “When all points are recurrent/generic”, Ergodic Theory and Dynamical Systems I, Progr. Math., 10, Birkhäuser, Boston, MA, 1981, 195–210 | MR

[19] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Grad. Texts in Math., 272, Springer, Cham, 2015 | MR | Zbl

[20] E. Glasner, M. Megrelishvili, “Hereditarily non-sensitive dynamical systems and linear representations”, Colloq. Math., 104:2 (2006), 223–283 | DOI | MR | Zbl

[21] L. S. Block, W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., 1513, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl