Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_2_a10, author = {A. V. Romanov}, title = {Ergodic {Properties} of {Tame} {Dynamical} {Systems}}, journal = {Matemati\v{c}eskie zametki}, pages = {295--306}, publisher = {mathdoc}, volume = {106}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a10/} }
A. V. Romanov. Ergodic Properties of Tame Dynamical Systems. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 295-306. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a10/
[1] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. of Math. (2), 38:1 (1937), 65–113 | DOI | MR
[2] D. Okstobi, “Ergodicheskie mnozhestva”, UMN, 8:3 (55) (1953), 75–97 | MR
[3] A. Köhler, “Enveloping semigroups for flows”, Proc. Roy. Irish Acad. Sect. A, 95:2 (1995), 179–191 | MR | Zbl
[4] E. Glasner, “Enveloping semigroups in topological dynamics”, Topology Appl., 154:11 (2007), 2344–2363 | DOI | MR | Zbl
[5] E. Glasner, “The structure of tame minimal dynamical systems”, Ergodic Theory Dynam. Systems, 27:6 (2007), 1819–1837 | DOI | MR | Zbl
[6] E. Glasner, M. Megrelishvili, “More on tame dynamical systems”, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math., 2213, Springer, Cham, 2018, 351–392 | DOI | MR | Zbl
[7] W. Huang, “Tame systems and scrambled pairs under an abelian group action”, Ergodic Theory Dynam. Systems, 26:5 (2006), 1549–1567 | DOI | MR | Zbl
[8] D. Kerr, H. Li, “Independence in topological and $C^*$-dynamics”, Math. Ann., 338:4 (2007), 869–926 | DOI | MR | Zbl
[9] A. V. Romanov, “Ergodic properties of discrete dynamical systems and enveloping semigroups”, Ergodic Theory Dynam. Systems, 36:1 (2016), 198–214 | DOI | MR | Zbl
[10] H. Kreidler, “Compact operator semigroups applied to dynamical systems”, Semigroup Forum, 97:3 (2018), 523–547 | MR | Zbl
[11] A. V. Romanov, “O slaboi${}^*$ skhodimosti operatornykh srednikh”, Izv. RAN. Ser. matem., 75:6 (2011), 79–98 | DOI | MR | Zbl
[12] V. Lebedev, Tame Semicascades and Cascades Generated by Affine Self-Mappings of the $d$-Torus, 2018, arXiv: 1806.06386
[13] W. F. Eberlein, “Abstract ergodic theorems and weak almost periodic functions”, Trans. Amer. Math. Soc., 67:1 (1949), 217–240 | DOI | MR | Zbl
[14] R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969 | MR | Zbl
[15] H. P. Rosenthal, “A characterization of Banach spaces containing $\ell^1$”, Proc. Nat. Acad. Sci. U.S.A., 71:6 (1974), 2411–2413 | DOI | MR | Zbl
[16] A. Iwanik, “On pointwise convergence of Cesáro means and separation properties for Markov operators on $C(X)$”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 29:9-10 (1981), 515–520 | MR | Zbl
[17] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl
[18] Y. Katznelson, B. Weiss, “When all points are recurrent/generic”, Ergodic Theory and Dynamical Systems I, Progr. Math., 10, Birkhäuser, Boston, MA, 1981, 195–210 | MR
[19] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Grad. Texts in Math., 272, Springer, Cham, 2015 | MR | Zbl
[20] E. Glasner, M. Megrelishvili, “Hereditarily non-sensitive dynamical systems and linear representations”, Colloq. Math., 104:2 (2006), 223–283 | DOI | MR | Zbl
[21] L. S. Block, W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., 1513, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl