On a Theorem of Kadets and Pe{\l}czy{\'n}ski
Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 174-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found under which a symmetric space $X$ on $[0,1]$ of type $2$ has the following property, which was first proved for the spaces $L_p$, $p>2$, by Kadets and Pełcziński: if $\{u_n\}_{n=1}^\infty$ is an unconditional basic sequence in $X$ such that $$ \|u_n\|_X\asymp\|u_n\|_{L_1},\qquad n\in\mathbb N, $$ then the norms of the spaces $X$ and $L_1$ are equivalent on the closed linear span $[u_n]$ in $X$. For sequences of martingale differences, this implication holds in any symmetric space of type $2$.
Keywords: Kadets–Pełczyński alternative, symmetric space, Rademacher type, Boyd indices, (disjointly) strictly singular inclusion.
@article{MZM_2019_106_2_a1,
     author = {S. V. Astashkin},
     title = {On a {Theorem} of {Kadets} and {Pe{\l}czy{\'n}ski}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {174--187},
     publisher = {mathdoc},
     volume = {106},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - On a Theorem of Kadets and Pe{\l}czy{\'n}ski
JO  - Matematičeskie zametki
PY  - 2019
SP  - 174
EP  - 187
VL  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a1/
LA  - ru
ID  - MZM_2019_106_2_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T On a Theorem of Kadets and Pe{\l}czy{\'n}ski
%J Matematičeskie zametki
%D 2019
%P 174-187
%V 106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a1/
%G ru
%F MZM_2019_106_2_a1
S. V. Astashkin. On a Theorem of Kadets and Pe{\l}czy{\'n}ski. Matematičeskie zametki, Tome 106 (2019) no. 2, pp. 174-187. http://geodesic.mathdoc.fr/item/MZM_2019_106_2_a1/

[1] M. I. Kadec and A. Pełczyński, “Bases, lacunary sequences and complemented subspaces in the spaces $L_p$”, Studia Math., 21 (1962), 161–176 | DOI | MR | Zbl

[2] T. Figiel, W. B. Johnson and L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approximation Theory, 13 (1975), 395–412 | DOI | MR | Zbl

[3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[4] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer-Verlag, New York, 2006 | MR | Zbl

[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[6] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR | Zbl

[7] S. V. Astashkin, Sistema Rademakhera v funktsionalnykh prostranstvakh, Fizmatlit, M., 2017

[8] V. A. Rodin, E. M Semyonov, “Rademacher series in symmetric spaces”, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[9] S. J. Szarek, “On the best constant in the Khintchine inequality”, Studia Math., 58:2 (1976), 197–208 | DOI | MR | Zbl

[10] L. Tzafriri, “Uniqueness of structure in Banach spaces”, Handbook of the Geometry of Banach Spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1635–1669 | MR | Zbl

[11] S. Ya. Novikov, “O chislovoi kharakteristike podprostranstva simmetrichnogo prostranstva”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavskii gos. un-t, Yaroslavl, 1980, 140–148 | Zbl

[12] S. V. Astashkin, “O diz'yunktnoi strogoi singulyarnosti vlozhenii simmetrichnykh prostranstv”, Matem. zametki, 65:1 (1999), 3–14 | DOI | MR | Zbl

[13] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[14] D. J. Aldous, D. H. Fremlin, “Colacunary sequences in $L$-spaces”, Stud. Math., 71:3 (1982), 297–304 | DOI | MR | Zbl

[15] S. V. Astashkin, F. L. Hernandez, and E. M. Semenov, “Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces”, Studia Math., 193:3 (2009), 269–283 | DOI | MR | Zbl

[16] A. Antipa, “Doob's inequality for rearrangement-invariant function spaces”, Rev. Roumaine Math. Pures Appl., 35:2 (1990), 101–108 | MR | Zbl

[17] I. Ya. Novikov, “Martingale inequalities in rearrangement invariant function spaces”, Function Spaces, Teubner-Texte Math., 120, Teubner, Stuttgart, 1991, 120–127 | MR | Zbl

[18] S. V. Astashkin, “$\Lambda(p)$-spaces”, J. Funct. Anal., 266:8 (2014), 5174–5198 | DOI | MR | Zbl

[19] N. L. Carothers, S. J. Dilworth, “Equidistributed random inequalities in $L_{p,q}$”, J. Funct. Anal., 84:1 (1989), 146–159 | DOI | MR | Zbl

[20] S. V. Astashkin and F. A. Sukochev, “Sequences of independent identically distributed functions in rearrangement invariant spaces”, Function spaces VIII, Banach Center Publ., 79, Polish Acad. Sci. Inst. Math., Warszawa, 2008, 27–37 | MR | Zbl

[21] N. L. Carothers, S. J. Dilworth, “Geometry of Lorentz spaces via interpolation”, Texas Functional Analysis Seminar 1985–1986, Univ. Texas, Austin, TX, 1986, 107–133 | MR