On the Degree of the Kodiyalam Polynomials
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 108-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we compute the degree of the Kodiyalam polynomials of an ideal in the case where its Rees ring is Cohen–Macaulay and its fiber ring is a domain. We apply this result to some classes of polymatroidal ideals.
Keywords: polymatroidal ideals, Kodiyalam polynomials.
@article{MZM_2019_106_1_a9,
     author = {G. Failla},
     title = {On the {Degree} of the {Kodiyalam} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--114},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/}
}
TY  - JOUR
AU  - G. Failla
TI  - On the Degree of the Kodiyalam Polynomials
JO  - Matematičeskie zametki
PY  - 2019
SP  - 108
EP  - 114
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/
LA  - ru
ID  - MZM_2019_106_1_a9
ER  - 
%0 Journal Article
%A G. Failla
%T On the Degree of the Kodiyalam Polynomials
%J Matematičeskie zametki
%D 2019
%P 108-114
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/
%G ru
%F MZM_2019_106_1_a9
G. Failla. On the Degree of the Kodiyalam Polynomials. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 108-114. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/

[1] J. Herzog, W. Welker, “The Betti polynomials of powers of an ideal”, J. Pure Appl. Algebra, 215:4 (2011), 589–596 | DOI | MR | Zbl

[2] V. Kodiyalam, “Homological invariants of powers of an ideal”, Proc. Amer. Math. Soc., 118 (1993), 757–764 | DOI | MR | Zbl

[3] G. Failla, M. La Barbiera, P. L. Staglianò, “Betti Numbers of Powers of Ideals”, Matematiche (Catania), 63:2 (2008), 191–195 | MR | Zbl

[4] C. Huneke, “On the associated graded ring of an ideal”, Illinois J. Math., 26:1 (1982), 121–137 | DOI | MR | Zbl

[5] D. Eisenbud, C. Huneke, “Cohen–Macaulay Rees algebras and their specialization”, J. Algebra, 81:1 (1983), 202–224 | DOI | MR | Zbl

[6] J. Herzog, M. Vladoiu, A. Rauf, “The stable set of associated prime ideals of a polymatroidal ideal”, J. Algebraic Combin., 37:2 (2013), 289–312 | DOI | MR | Zbl

[7] R. H. Villareal, “Rees cones and monomial rings of matroids”, Linear Algebra Appl., 428:11-12 (2008), 2933–2940 | DOI | MR

[8] J. Herzog, T. Hibi, “Discrete polymatroids”, J. Algebraic Combin., 16:3 (2002), 239–268 | DOI | MR | Zbl

[9] J. Herzog, T. Hibi, Monomial Ideals, Grad. Texts in Math., 260, Springer-Verlag London, London, 2011 | MR | Zbl

[10] J. Herzog, Y. Takayama, “Resolutions by mapping cones”, Homology Homotopy Appl., 4:2, Part 2 (2002), 277–294 | DOI | MR | Zbl

[11] S. Eliahou, M. Kervaire, “Minimal resolutions of some monomial ideals”, J. Algebra, 129:1 (1990), 1–25 | DOI | MR | Zbl

[12] L. Sherifan, M. Varbaro, “Graded Betti numbers of ideals with linear quotients”, Matematiche (Catania), 63:2 (2008), 257–265 | MR