On the Degree of the Kodiyalam Polynomials
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 108-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we compute the degree of the Kodiyalam polynomials of an ideal in the case where its Rees ring is Cohen–Macaulay and its fiber ring is a domain. We apply this result to some classes of polymatroidal ideals.
Keywords: polymatroidal ideals, Kodiyalam polynomials.
@article{MZM_2019_106_1_a9,
     author = {G. Failla},
     title = {On the {Degree} of the {Kodiyalam} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {108--114},
     year = {2019},
     volume = {106},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/}
}
TY  - JOUR
AU  - G. Failla
TI  - On the Degree of the Kodiyalam Polynomials
JO  - Matematičeskie zametki
PY  - 2019
SP  - 108
EP  - 114
VL  - 106
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/
LA  - ru
ID  - MZM_2019_106_1_a9
ER  - 
%0 Journal Article
%A G. Failla
%T On the Degree of the Kodiyalam Polynomials
%J Matematičeskie zametki
%D 2019
%P 108-114
%V 106
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/
%G ru
%F MZM_2019_106_1_a9
G. Failla. On the Degree of the Kodiyalam Polynomials. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 108-114. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a9/

[1] J. Herzog, W. Welker, “The Betti polynomials of powers of an ideal”, J. Pure Appl. Algebra, 215:4 (2011), 589–596 | DOI | MR | Zbl

[2] V. Kodiyalam, “Homological invariants of powers of an ideal”, Proc. Amer. Math. Soc., 118 (1993), 757–764 | DOI | MR | Zbl

[3] G. Failla, M. La Barbiera, P. L. Staglianò, “Betti Numbers of Powers of Ideals”, Matematiche (Catania), 63:2 (2008), 191–195 | MR | Zbl

[4] C. Huneke, “On the associated graded ring of an ideal”, Illinois J. Math., 26:1 (1982), 121–137 | DOI | MR | Zbl

[5] D. Eisenbud, C. Huneke, “Cohen–Macaulay Rees algebras and their specialization”, J. Algebra, 81:1 (1983), 202–224 | DOI | MR | Zbl

[6] J. Herzog, M. Vladoiu, A. Rauf, “The stable set of associated prime ideals of a polymatroidal ideal”, J. Algebraic Combin., 37:2 (2013), 289–312 | DOI | MR | Zbl

[7] R. H. Villareal, “Rees cones and monomial rings of matroids”, Linear Algebra Appl., 428:11-12 (2008), 2933–2940 | DOI | MR

[8] J. Herzog, T. Hibi, “Discrete polymatroids”, J. Algebraic Combin., 16:3 (2002), 239–268 | DOI | MR | Zbl

[9] J. Herzog, T. Hibi, Monomial Ideals, Grad. Texts in Math., 260, Springer-Verlag London, London, 2011 | MR | Zbl

[10] J. Herzog, Y. Takayama, “Resolutions by mapping cones”, Homology Homotopy Appl., 4:2, Part 2 (2002), 277–294 | DOI | MR | Zbl

[11] S. Eliahou, M. Kervaire, “Minimal resolutions of some monomial ideals”, J. Algebra, 129:1 (1990), 1–25 | DOI | MR | Zbl

[12] L. Sherifan, M. Varbaro, “Graded Betti numbers of ideals with linear quotients”, Matematiche (Catania), 63:2 (2008), 257–265 | MR