On the Partition of an Odd Number into Three Primes in a Prescribed Proportion
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 95-107
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that, for any partition $1=a+b+c$ of unity into three positive summands, each odd number $n$ can be subdivided into three primes $n=p_a(n)+p_b(n)+p_c(n)$ so that the fraction of the first summand will approach $a$, that of the second, $b$, and that of the third, $c$ as $n \to \infty$.
Keywords:
Goldbach–Vinogradov theorem, distribution of primes, Hardy–Littlewood circle method, trigonometric sums.
@article{MZM_2019_106_1_a8,
author = {A. A. Sagdeev},
title = {On the {Partition} of an {Odd} {Number} into {Three} {Primes} in a {Prescribed} {Proportion}},
journal = {Matemati\v{c}eskie zametki},
pages = {95--107},
publisher = {mathdoc},
volume = {106},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/}
}
A. A. Sagdeev. On the Partition of an Odd Number into Three Primes in a Prescribed Proportion. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/