Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_1_a8, author = {A. A. Sagdeev}, title = {On the {Partition} of an {Odd} {Number} into {Three} {Primes} in a {Prescribed} {Proportion}}, journal = {Matemati\v{c}eskie zametki}, pages = {95--107}, publisher = {mathdoc}, volume = {106}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/} }
A. A. Sagdeev. On the Partition of an Odd Number into Three Primes in a Prescribed Proportion. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/
[1] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl
[2] I. M. Vinogradov, “Predstavlenie nechetnogo chisla v vide summy trekh prostykh chisel”, Dokl. AN SSSR, 15 (1937), 291–294
[3] H. A. Helfgott, The Ternary Goldbach Conjecture is True, 2013, arXiv: 1312.7748
[4] C. B. Haselgrove, “Some problems in the analytic theory of numbers”, J. London Math. Soc., 26 (1951), 237–277 | MR
[5] K. Matomäki, J. Maynard, X. Shao, “Vinogradov's theorem with almost equal summands”, Proc. Lond. Math. Soc. (3), 115:2 (2017), 323–347 | DOI | MR | Zbl
[6] P. Keevash, E. Long, “Frankl-Rödl–type theorems for codes and permutations”, Trans. Amer. Math. Soc., 369:2 (2017), 1147–1162 | DOI | MR | Zbl
[7] A. A. Sagdeev, “O teoreme Frankla–Redla”, Izv. RAN. Ser. matem., 82:6 (2018), 128–157 | DOI | Zbl
[8] A. A. Sagdeev, “Uluchshennaya teorema Frankla–Redlya i nekotorye ee geometricheskie sledstviya”, Probl. peredachi inform., 54:2 (2018), 45–72
[9] A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl–Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comenian. (N.S.) (to appear)