On the Partition of an Odd Number into Three Primes in a Prescribed Proportion
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 95-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for any partition $1=a+b+c$ of unity into three positive summands, each odd number $n$ can be subdivided into three primes $n=p_a(n)+p_b(n)+p_c(n)$ so that the fraction of the first summand will approach $a$, that of the second, $b$, and that of the third, $c$ as $n \to \infty$.
Keywords: Goldbach–Vinogradov theorem, distribution of primes, Hardy–Littlewood circle method, trigonometric sums.
@article{MZM_2019_106_1_a8,
     author = {A. A. Sagdeev},
     title = {On the {Partition} of an {Odd} {Number} into {Three} {Primes} in a {Prescribed} {Proportion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/}
}
TY  - JOUR
AU  - A. A. Sagdeev
TI  - On the Partition of an Odd Number into Three Primes in a Prescribed Proportion
JO  - Matematičeskie zametki
PY  - 2019
SP  - 95
EP  - 107
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/
LA  - ru
ID  - MZM_2019_106_1_a8
ER  - 
%0 Journal Article
%A A. A. Sagdeev
%T On the Partition of an Odd Number into Three Primes in a Prescribed Proportion
%J Matematičeskie zametki
%D 2019
%P 95-107
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/
%G ru
%F MZM_2019_106_1_a8
A. A. Sagdeev. On the Partition of an Odd Number into Three Primes in a Prescribed Proportion. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a8/

[1] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl

[2] I. M. Vinogradov, “Predstavlenie nechetnogo chisla v vide summy trekh prostykh chisel”, Dokl. AN SSSR, 15 (1937), 291–294

[3] H. A. Helfgott, The Ternary Goldbach Conjecture is True, 2013, arXiv: 1312.7748

[4] C. B. Haselgrove, “Some problems in the analytic theory of numbers”, J. London Math. Soc., 26 (1951), 237–277 | MR

[5] K. Matomäki, J. Maynard, X. Shao, “Vinogradov's theorem with almost equal summands”, Proc. Lond. Math. Soc. (3), 115:2 (2017), 323–347 | DOI | MR | Zbl

[6] P. Keevash, E. Long, “Frankl-Rödl–type theorems for codes and permutations”, Trans. Amer. Math. Soc., 369:2 (2017), 1147–1162 | DOI | MR | Zbl

[7] A. A. Sagdeev, “O teoreme Frankla–Redla”, Izv. RAN. Ser. matem., 82:6 (2018), 128–157 | DOI | Zbl

[8] A. A. Sagdeev, “Uluchshennaya teorema Frankla–Redlya i nekotorye ee geometricheskie sledstviya”, Probl. peredachi inform., 54:2 (2018), 45–72

[9] A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl–Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comenian. (N.S.) (to appear)