Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_106_1_a6, author = {N. N. Konechnaja and K. A. Mirzoev}, title = {The {Leading} {Term} of the {Asymptotics} of {Solutions} of {Linear} {Differential} {Equations} with {First-Order} {Distribution} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {74--83}, publisher = {mathdoc}, volume = {106}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/} }
TY - JOUR AU - N. N. Konechnaja AU - K. A. Mirzoev TI - The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients JO - Matematičeskie zametki PY - 2019 SP - 74 EP - 83 VL - 106 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/ LA - ru ID - MZM_2019_106_1_a6 ER -
%0 Journal Article %A N. N. Konechnaja %A K. A. Mirzoev %T The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients %J Matematičeskie zametki %D 2019 %P 74-83 %V 106 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/ %G ru %F MZM_2019_106_1_a6
N. N. Konechnaja; K. A. Mirzoev. The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/
[1] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl
[2] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, Clarendon Press, Oxford, 1989 | MR | Zbl
[3] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[4] N. N. Konechnaya, K. A. Mirzoev, A. A. Shkalikov, “Ob asimptotike reshenii dvuchlennykh differentsialnykh uravnenii s singulyarnymi koeffitsientami”, Matem. zametki, 104:2 (2018), 231–242 | DOI | Zbl
[5] W. N. Everitt, L. Marcus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[6] A. F. Filippov, Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[7] A. Yu. Levin, “Voprosy teorii obyknovennogo lineinogo differentsialnogo uravneniya, II”, Vestn. Yaroslavskogo un-ta im. P. G. Demidova, 1974, no. 8, 122–144
[8] V. Ya. Derr, “K opredeleniyu resheniya lineinogo differentsialnogo uravneniya s obobschennymi funktsiyami v koeffitsientakh”, Dokl. AN SSSR, 298:2 (1988), 269–272 | Zbl
[9] R. Pfaff, “Gewohnliche lineare differentialgleichungen zweiter ordnung mit Distributionskoeffizient”, Arch. Math. (Basel), 32:5 (1979), 469–478 | DOI | MR | Zbl
[10] R. E. White, “Weak solutions of $(p(x)u'(x))'+g(x)u'(x)+qu(x)=f$ with $q,f\in H_{-1}[a,b]$, $0
(x)\in L_\infty[a,b]$, $g(x)\in L_\infty[a,b]$ and $u\in H_1[a,b]$”, SIAM. J. Math. Anal., 10:6 (1979), 1313–1325 | DOI | MR | Zbl[11] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, M., 2003, 159–212 | MR | Zbl
[12] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl
[13] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 335–359
[14] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, Boston, MA, 1965 | MR | Zbl