The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a_1,a_2,\dots,a_n$, and $\lambda$ be complex numbers, and let $p_1,p_2,\dots,p_n$ be measurable complex-valued functions on $\mathbb R_+$ ($:=[0,+\infty)$) such that $$ |p_1|+(1+|p_2-p_1|)\sum_{j=2}^n|p_j| \in L^1_{\mathrm{loc}}(\mathbb R_+). $$ A construction is proposed which makes it possible to well define the differential equation $$ y^{(n)}+(a_1+p_1(x))y^{(n-1)} +(a_2+p'_2(x)) y^{(n-2)}+\dotsb +(a_n+p'_n(x))y=\lambda y $$ under this condition, where all derivatives are understood in the sense of distributions. This construction is used to show that the leading term of the asymptotics as $x\to +\infty$ of a fundamental system of solutions of this equation and of their derivatives can be determined, as in the classical case, from the roots of the polynomial $$ Q(z)=z^n+a_1 z^{n-1}+\dotsb+a_n-\lambda, $$ provided that the functions $p_1,p_2,\dots,p_n$ satisfy certain conditions of integral decay at infinity. The case where $a_1=\dotsb=a_n=\lambda=0$ is considered separately and in more detail.
Keywords: differential equations with distribution coefficients, quasiderivatives, quasidifferential expression, leading term of the asymptotics of solutions of differential equations.
@article{MZM_2019_106_1_a6,
     author = {N. N. Konechnaja and K. A. Mirzoev},
     title = {The {Leading} {Term} of the {Asymptotics} of {Solutions} of {Linear} {Differential} {Equations} with {First-Order} {Distribution} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/}
}
TY  - JOUR
AU  - N. N. Konechnaja
AU  - K. A. Mirzoev
TI  - The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
JO  - Matematičeskie zametki
PY  - 2019
SP  - 74
EP  - 83
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/
LA  - ru
ID  - MZM_2019_106_1_a6
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%A K. A. Mirzoev
%T The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
%J Matematičeskie zametki
%D 2019
%P 74-83
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/
%G ru
%F MZM_2019_106_1_a6
N. N. Konechnaja; K. A. Mirzoev. The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/

[1] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl

[2] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, Clarendon Press, Oxford, 1989 | MR | Zbl

[3] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[4] N. N. Konechnaya, K. A. Mirzoev, A. A. Shkalikov, “Ob asimptotike reshenii dvuchlennykh differentsialnykh uravnenii s singulyarnymi koeffitsientami”, Matem. zametki, 104:2 (2018), 231–242 | DOI | Zbl

[5] W. N. Everitt, L. Marcus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[6] A. F. Filippov, Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[7] A. Yu. Levin, “Voprosy teorii obyknovennogo lineinogo differentsialnogo uravneniya, II”, Vestn. Yaroslavskogo un-ta im. P. G. Demidova, 1974, no. 8, 122–144

[8] V. Ya. Derr, “K opredeleniyu resheniya lineinogo differentsialnogo uravneniya s obobschennymi funktsiyami v koeffitsientakh”, Dokl. AN SSSR, 298:2 (1988), 269–272 | Zbl

[9] R. Pfaff, “Gewohnliche lineare differentialgleichungen zweiter ordnung mit Distributionskoeffizient”, Arch. Math. (Basel), 32:5 (1979), 469–478 | DOI | MR | Zbl

[10] R. E. White, “Weak solutions of $(p(x)u'(x))'+g(x)u'(x)+qu(x)=f$ with $q,f\in H_{-1}[a,b]$, $0

(x)\in L_\infty[a,b]$, $g(x)\in L_\infty[a,b]$ and $u\in H_1[a,b]$”, SIAM. J. Math. Anal., 10:6 (1979), 1313–1325 | DOI | MR | Zbl

[11] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, M., 2003, 159–212 | MR | Zbl

[12] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl

[13] K. A. Mirzoev, “Operatory Shturma–Liuvillya”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 335–359

[14] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, Boston, MA, 1965 | MR | Zbl