The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 74-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a_1,a_2,\dots,a_n$, and $\lambda$ be complex numbers, and let $p_1,p_2,\dots,p_n$ be measurable complex-valued functions on $\mathbb R_+$ ($:=[0,+\infty)$) such that $$ |p_1|+(1+|p_2-p_1|)\sum_{j=2}^n|p_j| \in L^1_{\mathrm{loc}}(\mathbb R_+). $$ A construction is proposed which makes it possible to well define the differential equation $$ y^{(n)}+(a_1+p_1(x))y^{(n-1)} +(a_2+p'_2(x)) y^{(n-2)}+\dotsb +(a_n+p'_n(x))y=\lambda y $$ under this condition, where all derivatives are understood in the sense of distributions. This construction is used to show that the leading term of the asymptotics as $x\to +\infty$ of a fundamental system of solutions of this equation and of their derivatives can be determined, as in the classical case, from the roots of the polynomial $$ Q(z)=z^n+a_1 z^{n-1}+\dotsb+a_n-\lambda, $$ provided that the functions $p_1,p_2,\dots,p_n$ satisfy certain conditions of integral decay at infinity. The case where $a_1=\dotsb=a_n=\lambda=0$ is considered separately and in more detail.
Keywords: differential equations with distribution coefficients, quasiderivatives, quasidifferential expression, leading term of the asymptotics of solutions of differential equations.
@article{MZM_2019_106_1_a6,
     author = {N. N. Konechnaja and K. A. Mirzoev},
     title = {The {Leading} {Term} of the {Asymptotics} of {Solutions} of {Linear} {Differential} {Equations} with {First-Order} {Distribution} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {106},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/}
}
TY  - JOUR
AU  - N. N. Konechnaja
AU  - K. A. Mirzoev
TI  - The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
JO  - Matematičeskie zametki
PY  - 2019
SP  - 74
EP  - 83
VL  - 106
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/
LA  - ru
ID  - MZM_2019_106_1_a6
ER  - 
%0 Journal Article
%A N. N. Konechnaja
%A K. A. Mirzoev
%T The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients
%J Matematičeskie zametki
%D 2019
%P 74-83
%V 106
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/
%G ru
%F MZM_2019_106_1_a6
N. N. Konechnaja; K. A. Mirzoev. The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients. Matematičeskie zametki, Tome 106 (2019) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/MZM_2019_106_1_a6/